Real-Time Workshop® Embedded Coder™ 5
User’s Guide

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Real-Time Workshop® Embedded Coder™ User’s Guide
© COPYRIGHT 2002-2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

July 2002
December 2003
June 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Version 3.0 (Release 13)

Revised for Version 3.2 (Release 13SP1+)
Revised for Version 4.0 (Release 14)
Revised for Version 4.1 (Release 14SP1)
Revised for Version 4.2 (Release 14SP2)
Revised for Version 4.3 (Release 14SP3)
Revised for Version 4.4 (Release 2006a)
Revised for Version 4.5 (Release 2006b)
Revised for Version 4.6 (Release 2007a)
Revised for Version 5.0 (Release 2007b)
Revised for Version 5.1 (Release 2008a)

Data Structures, Code Modules, and Program

Execution

Real-Time Model (rtModel) Data Structure 1-3
[0 0713 a4 =) 1-3
rtModel Accessor Macroscouiiiiiiin.. 1-4
CodeModules i 1-5
Introduction 1-5
Generated Code Modules, 1-5
User-Written Code Modules 1-8
Generating the Main Program Module 1-9
Program Execution Overview 1-11
Stand-Alone Program Execution 1-12
[0 072 a4 =) 2 1-12
Main Program00 ittt 1-13
rt_OneStep e e 1-14

Wind River Systems VxWorks® Example Main Program

Execution i 1-21
L0] 7 1= 1-21
Task Managementcc0uuuuunnnn. 1-22
Model Entry Points 1-24
Static Main Program Module 1-26
L0] 7 = 1-26
Rate Grouping and the Static Main Program 1-28

Modifying the Static Main Program 1-29

vi

Contents

Rate Grouping Compliance and Compatibility

Issues e e 1-32
Main Program Compatibility 1-32
Making Your S-Functions Rate Grouping Compliant 1-32

Code Generation Options and Optimizations

2

Accessing the ERT Target Options 2-3
Introduction 2-3
Viewing ERT Target Options in the Configuration

Parameters Dialog Box or Model Explorer 2-4

Support for Continuous Time Blocks, Continuous

Solvers, and Stop Time 2-5
Generating Code for Continuous Time Blocks 2-5
Generating Code that Supports Continuous Solvers 2-5
Generating Code that Honors a Stop Time 2-6

Mapping Application Requirements to Configuration

Optionst i 2-7
ConfiguringaModel 2-8
Selecting an ERT Target 2-8
Generating a Report that Includes Hyperlinks for Tracing
Code to Model Blocks, 2-10
Customizing Comments in Generated Code 2-11
Customizing Generated Identifiers 2-13
Configuring Symbols 2-14
Configuring Model Interfaces 2-22
Controlling Code Style i, .. 2-27
Configuring Templates for Customizing Code 2-28
Configuring the Placement of Datain Code 2-29
Configuring Replacement Data Types 2-29
Configuring Memory Sections 2-31
Configuring Optimizations 2-32
Tips for Optimizing the Generated Code 2-34
Introduction 2-34

Using Auto-Optimized Targets
Using Configuration Wizard Blocks
Setting Hardware Implementation Parameters

Correctly ... e e
Removing Unnecessary Initialization Code
Generating Pure Integer Code If Possible
Disabling MAT-File Logging
Using Virtualized Output Ports Optimization
Using Stack Space Allocation Options
Using External Mode with the ERT Target

Creating and Using a Code Generation Report
OVeIVIEW o ittt ettt e e e
Generating an HTML Code Generation Report
Using Code-to-Model Traceability
Using Model-to-Code Traceability
Using the Model-to-Code Navigation Dialog Box to Load

Existing Trace Information
Viewing the Traceability Report
Traceability Limitations,

Automatic S-Function Wrapper Generation
OVeIVIEW o ittt ettt e e e
Generating an ERT S-Function Wrapper
S-Function Wrapper Generation Limitations

Verifying Generated Code with Software-in-the-loop
Testing i,
OVeIVIEW ..ttt e e e e
Validating Generated Code on the MATLAB® Host

Computer Using Hardware Emulation
Validating ERT Production Code on the MATLAB® Host
Computer Using Portable Word Sizes

Exporting Function-Call Subsystems
OVeIVIEW ottt ettt et et e e e
Exported Subsystems Demo
Additional Information,
Requirements for Exporting Function-Call Subsystems
Techniques for Exporting Function-Call Subsystems
Optimizing Exported Function-Call Subsystems

vii

viii

Contents

Exporting Function-Call Subsystems That Depend on
Elapsed Timet iiiiiiiiiiiinnnnn.

Function-Call Subsystem Export Example

Function-Call Subsystems Export Limitations

Nonvirtual Subsystem Modular Function Code
Generation
OVeIVIEW o ittt ettt et e e e
Configuring Nonvirtual Subsystems for Generating

Modular Function Codecovn....
Examples of Modular Function Code for Nonvirtual

Subsystems e e e
Nonvirtual Subsystem Modular Function Code

Limitationst

Controlling model_step Function Prototypes
OVeIVIEW & ittt ettt e e e
Model Interface Dialog Box
model_step Function Prototype Example
Configuring a model_step Function Prototype

Programmatically
Sample M Script for Configuring a model_step Function

Prototypecoiiiiiiiiii i e
Configuring a Step Function Prototype for a Nonvirtual

Subsystem e
Verifying Generated Code for Customized Step

Functionscoiiiiiiiiiiiiinn..
model_step Function Prototype Control Limitations

Creating and Using Host-Based Shared Libraries
OVeIVIEW ..ttt e e e
Generating a Shared Library Version of Your Model

Code ..ot e
Creating Application Code to Load and Use Your Shared

Library File
Host-Based Shared Library Limitations

Developing Models and Code That Comply with
Industry Standards and Guidelines

3

What Are the Standards and Guidelines?

Developing Models and Code That Comply with MAAB
Guidelines i i i,

Developing Models and Code That Comply with MISRA
C®Guidelines i

Generating Code That Complies with AUTOSAR
Standards il
Overview of AUTOSAR Support
Importing an AUTOSAR Software Component
Modify and Validate an Existing AUTOSAR Interface
Exporting an AUTOSAR Software Component
AUTOSAR Model Interface Dialog Box
Configuring AUTOSAR Options Programmatically
Limitations and Tipsc.ciiiiiiinnnnnnn.
Migrating AUTOSAR Development Kit Models

Developing Models and Code That Comply with the IEC
61508 Standard i,
Applying Simulink® and Real-Time Workshop® Technology

to the IEC 61508 Standard
Checking for TEC 61508 Standard Compliance Using the

Model Advisorciiitiiiii e
Validating Traceability

Developing Models and Code That Comply with the
DO-178B Standard,
Applying Simulink® and Real-Time Workshop® Technology

to the DO-178B Standard
Checking for Standard Compliance Using the Model

AdVISOT .o v v e
Validating Traceability, ..

3-3

3-5

3-6

ix

X

Contents

Custom Storage Classes

q |

Introduction to Custom Storage Classes

L0 7] 7 =
Custom Storage Class Memory Sections

Custom Storage Classes and Simulink® Data Objects ..

L0 7] 7 =
Predefined CSCsottt i e i iiiinnn
Setting Custom Storage Class Properties
Generating Code with CSCs

Designing Custom Storage Classes and Memory

Sections i e
Using the Custom Storage Class Designer
Editing Custom Storage Class Properties
Using Custom Storage Class References
Editing Memory Section Definitions
Using Memory Section References

Creating Packages with CSC Definitions

Defining Advanced Custom Storage Class Types

L0 7] 7 1=
Create Your Own Parameter and Signal Classes
Create a Custom Attributes Class for Your CSC
Optional) ...ttt i i e e e
Write TLC Code for Your CSC
Register Custom Storage Class Definitions

GetSet Custom Storage Class for Data Store Memory ..

L0) 7 =
Example of Generated Code with GetSet Custom Storage
Class oo e e

Setting Code Generation Options for Custom Storage

ClasSSeS . ..ot e e

Custom Storage Class Limitations

4-3
4-3
4-4

4-6
4-6
4-7
4-10
4-11

4-16
4-16
4-21
4-28
4-31
4-34

4-38

Older Custom Storage Classes (Prior to Release 14) ...
Introduction
Simulink.CustomParameter Class
Simulink.CustomSignal Class
Instance-Specific Attributes for Older Storage Classes
Assigning a Custom Storage ClasstoData
Code Generation with Older Custom Storage Classes
Compatibility Issues for Older Custom Storage Classes

4-52
4-52
4-52
4-54
4-57
4-59
4-59
4-60

Memory Sections

5

Introduction to Memory Sections
L0 7] 7 =
Memory Sections Democciiiiiiiia..
Additional Information

Requirements for Defining Memory Sections

Defining Memory Sections
Editing Memory Section Properties
Specifying the Memory Section Name
Specifying a Qualifier for Custom Storage Class Data

Definitions 0.
Specifying Comment and Pragma Text
Surrounding Individual Definitions with Pragmas
Including Identifier Names in Pragmas

Applying Memory Sections
Assigning Memory Sections to Custom Storage Classes
Applying Memory Sections to Model-Level Functions and

InternalData
Applying Memory Sections to Atomic Subsystems

Examples of Generated Code with Memory Sections ..
Sample ERT-Based Model with Subsystem
Model-Level Data Structures
Model-Level Functionscciiiia..
Subsystem Function

5-2
5-2
5-2
5-2

5-4
5-6
5-6
5-7

5-8

xi

xii

Advanced Code Generation Techniques

6

Introduction i .. 6-3
Code Generation with User-Defined Data Types 6-5
L0 7] 7 1= 6-5
Specifying Type Definition Location for User-Defined Data
174 0T 6-6
Using User-Defined Data Types for Code Generation 6-7

Customizing the Target Build Process with the

STF make rtw Hook File 6-8
L0 7] 7 = 6-8
File and Function Naming Conventions 6-8
STF_make_rtw_hook.m Function Prototype and

Arguments e 6-9
Applications for STF_make_rtw_hook.m 6-13
Using STF_make_rtw_hook.m for Your Build Procedure .. 6-14

Customizing the Target Build Process with

sl customization.m 6-15
L0 7] 7 1= 6-15
Registering Build Process Hook Functions Using

sl_customization.mcouiiitit 6-17
Variables Available for sl_customization.m Hook

Functions i 6-18
Example Build Process Customization Using

sl _customization.mcuuiiinttn 6-18

Auto-Configuring Models for Code Generation 6-20

L0) 7 1= 6-20
Utilities for Accessing Model Configuration Properties ... 6-20
Automatic Model Configuration Using

ert_ make rtw _hook 6-21
Using the Auto-Configuration Utilities 6-23

Generating Efficient Code with Optimized ERT

Targetsc it 6-24
L0 7] 7 = 6-24
Default ERT Targetcc0 .. 6-25

Contents

Optimized Fixed-Point ERT Target
Optimized Floating-Point ERT Target
Using the Optimized ERT Targets

Custom File Processing
OVeIVIEW ottt ettt ettt e e e
Custom File Processing Components
Custom File Processing User Interface Options
Code Generation Template (CGT) Files
Using Custom File Processing (CFP) Templates
Custom File Processing (CFP) Template Structure
Generating Source and Header Files with a Custom File

Processing (CFP) Template
Code Template API Summary
Generating Custom File Banners

Optimizing Your Model with Configuration Wizard
Blocksand Scripts
OVeIVIEW o ittt ettt e e e
Configuration Wizards vs. Auto-Configuring Targets
Adding a Configuration Wizard Block to Your Model
Using Configuration Wizard Blocks
Creating a Custom Configuration Wizard Block

Replacement of STF_rtw_info_hook Mechanism

Optimizing Task Scheduling for Multirate Multitasking

Models on RTOS Targets
OVeIVIEW ottt ettt et et e e e
Using rtmStepTask

Task Scheduling Code for Multirate Multitasking Model on

Wind River Systems VxWorks® Target
Suppressing Redundant Scheduling Calls

Target Function Libraries

7

Introduction to Target Function Libraries
Overview of Target Function Libraries

xiii

xiv

Contents

Target Function Libraries General Workflow 7-5

Target Function Libraries Quick-Start Example 7-6
Creating Function Replacement Tables 7-13
Overview of Function Replacement Table Creation 7-13
Creating Table Entries oo, .. 7-16
Example: Mapping Math Functions to Target-Specific
Implementations 7-22
Example: Mapping Operators to Target-Specific
Implementations 7-27
Mapping Fixed-Point Operators to Target-Specific
Implementations 7-33
Specifying Build Information for Function
Replacements 7-53
Adding Target Function Library Reserved Identifiers 7-56

Examining and Validating Function Replacement

Tablesttt e 7-58
Overview of Function Replacement Table Validation 7-58
Invoking the Table Definition M-File 7-58
Using the Target Function Library Viewer to Examine Your
Table ... e e 7-59
Using the Target Function Library Viewer to Examine
Registered TFLs, 7-60
Tracing Code Generated Using Your Target Function
Libraryt e e e 7-62
Examining TFL Cache Hits and Misses 7-64
Registering Target Function Libraries 7-66
Overview of TFL Registration 7-66
Using the sl_customization API to Registera TFL 7-66
Registering Multiple TFLs 7-71
Target Function Library Limitations 7-72

ERT Target Requirements, Restrictions, and
Control Files

8|

Requirements and Restrictions for ERT-Based

Simulink® Models, 8-2
ERT System Target File and Template Makefiles 8-4
Examples

Al

Data Structures, Code Modules, and Program

Execution il A-2
Code Generation A-2
Custom StorageClasses A-2
Memory Sections, A-3
Advanced Code Generation A-3
Target Function Libraries A-3

Index

XV

xvi Contents

Data Structures, Code
Modules, and Program

Execution

This chapter describes the essential components and techniques used in a
Real-Time Workshop® Embedded Coder™ application. The topics include
data structures, code modules, header files, generated program execution, and
task management. For an introduction to the Real-Time Workshop Embedded
Coder product and its capabilities, see Real-Time Workshop Embedded Coder
Getting Started Guide. For information on applications of the Real-Time
Workshop Embedded Coder product and how and when you might use it
during system development, see “Introduction to Real-Time Workshop®
Technology” in the Real-Time Workshop documentation.

Real-Time Model (rtModel) Data
Structure (p. 1-3)

Code Modules (p. 1-5)

Generating the Main Program
Module (p. 1-9)

Program Execution Overview
(p. 1-11)

Real-Time Workshop Embedded
Coder real-time model data
structure.

Code modules and header files
generated by the Real-Time
Workshop Embedded Coder
software.

Explains how to generate an example
main program module as a basis for
custom modifications.

Overview of the operation of
Real-Time Workshop Embedded
Coder generated programs.

1 Data Structures, Code Modules, and Program Execution

Stand-Alone Program Execution
(p. 1-12)

Wind River Systems VxWorks®
Example Main Program Execution
(p. 1-21)

Model Entry Points (p. 1-24)

Static Main Program Module
(p. 1-26)

Rate Grouping Compliance and
Compatibility Issues (p. 1-32)

Execution and task management in
stand-alone (bareboard) generated
programs.

Execution and task management of
example programs deployed under
the VxWorks® real-time operating
system.

Description of model entry-point
functions generated by the
Real-Time Workshop Embedded
Coder software and how to call them.

Description of the alternative static
(non-generated) main program
module.

How to take advantage of the
efficiency of rate grouping by
updating your multirate inlined
S-functions and main program
module for compatibility.

Real-Time Model (rtModel) Data Structure

Real-Time Model (rtModel) Data Structure

In this section...

“Overview” on page 1-3

“rtModel Accessor Macros” on page 1-4

Overview

The Real-Time Workshop® Embedded Coder™ real-time model data structure,
also referred to as rtModel, encapsulates information about the root model.

To reduce memory requirements, rtModel contains only information required
by your model. For example, the fields related to data logging are generated
only if the model has the MAT-file logging code generation option enabled.
rtModel may also contain model-specific information related to timing,
solvers, and model data such as inputs, outputs, states, and parameters.

By default, rtModel contains an error status field that your code can monitor
or set. If you do not need to log or monitor error status in your application,
select the Suppress error status in real-time model data structure
option. This further reduces memory usage. Selecting this option may also
cause rtModel to disappear completely from the generated code.

The symbol definitions for rtModel in generated code are as follows:
¢ Structure definition (in model.h):

struct RT_MODEL_model {

b
® Forward declaration typedef (in model types.h):

typedef struct RT_MODEL_model RT_MODEL_model;

e Variable and pointer declarations (in model.c or .cpp):

RT_MODEL_model model_ M_;
RT_MODEL_model *model M = &model_ M_;

1 Data Structures, Code Modules, and Program Execution

® Variable export declaration (in model.h):

extern RT_MODEL_model *model_M;

rtModel Accessor Macros

To enable you to interface your code to rtModel, the Real-Time Workshop
Embedded Coder software provides accessor macros. Your code can use the
macros, and access the fields they reference, with model.h.

If you are interfacing your code to a single model, refer to its rtModel
generically as model M, and use the macros to access its rtModel as in the
following code fragment.

#include "model.h"
const char *errStatus = rtmGetErrorStatus(model_ M) ;

To interface your code to the rtModel structures of more than one model,
simply include the model.h headers for each model, as in the following code
fragment.

#include "modelA.h" /* Make model A entry points visible */
#include "modelB.h" /* Make model B entry points visible */

void myHandWrittenFunction(void)

{
const char_T *errStatus;
modelA_initialize(1); /* Call model A initializer */
modelB_initialize(1); /* Call model B initializer */
/* Refer to model A's rtModel */
errStatus = rtmGetErrorStatus(modelA M) ;
/* Refer to model B's rtModel */
errStatus = rtmGetErrorStatus(modelB_M);
}

To view macros related to rtModel that are applicable to your specific model,
generate code with a code generation report (see “Creating and Using a
Code Generation Report” on page 2-44). Then, view model . h by clicking the
hyperlink in the report.

Code Modules

Code Modules

In this section...

“Introduction” on page 1-5
“Generated Code Modules” on page 1-5
“User-Written Code Modules” on page 1-8

Introduction

This section summarizes the code modules and header files that make up a
Real-Time Workshop® Embedded Coder™ program, and describes where
to find them.

Note that in most cases, the easiest way to locate and examine the generated
code files is to use the Real-Time Workshop Embedded Coder code generation
report. The code generation report provides a table of hyperlinks that let you
view the generated code in the MATLAB® Help browser. See “Creating and
Using a Code Generation Report” on page 2-44 for further information.

Generated Code Modules

The Real-Time Workshop Embedded Coder software creates a build directory
in your working directory to store generated source code. The build directory
also contains object files, a makefile, and other files created during the code
generation process. The default name of the build directory is model ert rtw.

Real-Time Workshop® Embedded Coder™ File Packaging on page 1-6
summarizes the structure of source code generated by the Real-Time
Workshop Embedded Coder software.

Note The Real-Time Workshop Embedded Coder file packaging differs
slightly (but significantly) from the file packaging employed by the GRT, GRT
malloc, and other non-embedded targets. See the Real-Time Workshop®
documentation for further information.

1-5

1 Data Structures, Code Modules, and Program Execution

Real-Time Workshop® Embedded Coder™ File Packaging

File

Description

model.c or .cpp

Contains entry points for all code implementing the model
algorithm (for example, model step, model initialize,
model terminate, model SetEventsForThisBaseStep).

model_private.h

Contains local macros and local data that are required by the model
and subsystems. This file is included by the generated source files
in the model. You do not need to include model_private.h when
interfacing hand-written code to a model.

model.h

Declares model data structures and a public interface to the model
entry points and data structures. Also provides an interface to the
real-time model data structure (model M) with accessor macros.
model .h is included by subsystem .c or .cpp files in the model.

If you are interfacing your hand-written code to generated code for
one or more models, you should include model.h for each model
to which you want to interface.

model _data.c or .cpp
(conditional)

model data.c or .cpp is conditionally generated. It contains
the declarations for the parameters data structure, the constant
block I/O data structure, and any zero representations used for
the model’s structure data types. If these data structures and
zero representations are not used in the model, model data.c
or .cpp is not generated. Note that these structures and zero
representations are declared extern in model . h.

model _types.h

Provides forward declarations for the real-time model data
structure and the parameters data structure. These may be needed
by function declarations of reusable functions. Also provides type
definitions for user-defined types used by the model.

rtwtypes.h

Defines data types, structures and macros required by Real-Time
Workshop Embedded Coder generated code. Most other generated
code modules require these definitions.

ert_main.c or .cpp
(optional)

This file is generated only if the Generate an example main
program option is on. (This option is on by default.) See
“Generating the Main Program Module” on page 1-9.

Code Modules

Real-Time Workshop® Embedded Coder™ File Packaging (Continued)

File

Description

autobuild.h
(optional)

This file is generated only if the Generate an example main
program option is off. (See “Generating the Main Program
Module” on page 1-9.)

autobuild.h contains #include directives required by the static
version of the ert_main.c main program module. Since the static
ert_main.c is not created at code generation time, it includes
autobuild.h to access model-specific data structures and entry
points.

See “Static Main Program Module” on page 1-26 for further
information.

model capi.cor .cpp Provides data structures that enable a running program to access

model_capi.h
(optional)

model parameters and signals without use of external mode. To
learn how to generate and use the model capi.c or .cpp and
.h files, see the “Data Exchange APIs” chapter in the Real-Time
Workshop documentation.

You can also customize the generated set of files in several ways:

® Nonvirtual subsystem code generation: You can instruct the Real-Time

Workshop software to generate separate functions, within separate
code files, for any nonvirtual subsystems. You can control the names
of the functions and of the code files. See “Nonvirtual Subsystem Code
Generation” in the Real-Time Workshop documentation for further
information.

Custom storage classes: You can use custom storage classes to partition
generated data structures into different files based on file names you
specify. See Chapter 4, “Custom Storage Classes” for further information.

Module Packaging Features (MPF) also lets you direct the generated code
into a required set of .c or .cpp and .h files, and control the internal
organization of the generated files. See the Module Packaging Features
document for details.

1 Data Structures, Code Modules, and Program Execution

User-Written Code Modules

Code that you write to interface with generated model code usually includes a
customized main module (based on a main program provided by the Real-Time
Workshop software), and may also include interrupt handlers, device driver
blocks and other S-functions, and other supervisory or supporting code.

You should establish a working directory for your own code modules. Your
working directory should be on the MATLAB path. Minimally, you must also
modify the ERT template makefile and system target file so that the build
process can find your source and object files. More extensive modifications to
the ERT target files are needed if you want to generate code for a particular
microprocessor or development board, and to deploy the code on target
hardware with a cross-development system.

See the Developing Embedded Targets document for information on how to
customize the ERT target for your production requirements.

Generating the Main Program Module

Generating the Main Program Module

The Generate an example main program option controls whether or not
ert_main.c or ert_main.cpp is generated for your Simulink® model. This
option is located in the Templates pane of the Configuration Parameters
dialog box, as shown in this figure.

#, Configuration Parameters: untitled/Configuration {Active) x|
Select ~Code templat =
- Sclver Source file [*.c] template: Iert_code_tamplate.cgt Browse... Edit.
-~ Diata Import/E spart
- O ptimization Header file [*.h) template:|ertfcodeftemplate.c:gt Browse... Edit..
[=]- Diagrostics
- Sample Time — D ata templat
- D aka Validity § 5
.. Type Conversion Source file [*.c] template: Iert_code_tamplate.cgt Browse... Edit..
Connec.h\.ﬂty Header file [k) template:|ert_code_template.c:gt Browse. . Edit..
- Campatibility
- Model Flafelencmg S ——_
-~ Hardware Implementation
- Model Referencing File customization lemplate:Iexampla_file_pmcess.llc Browse... | Edit.. |
E-Real Time Workshop [¥ Generate an example main progranm
Comments e [
Symbals Target operating system: I BareB oardE sample ;I
- Custom Code
- Debug
- |nterface

- Code Style

- Data Placement
-~ [ata Type Replacement
-+ bemory Sections

oK I Lancel Help | Apply |

Options for Generating a Main Program

By default, Generate an example main program is on. When Generate
an example main program is selected, the Target operating system
pop-up menu is enabled. This menu lets you choose the following options:

® BareBoardExample: Generate a bareboard main program designed to run
under control of a real-time clock, without a real-time operating system.

® VxWorksExample: Generate a fully commented example showing how
to deploy the code under the Wind River Systems VxWorks® real-time
operating system.

1-9

1 Data Structures, Code Modules, and Program Execution

1-10

Regardless of which Target operating system you select, ert_main.c or
.cpp includes

e The main() function for the generated program

® Task scheduling code that determines how and when block computations
execute on each time step of the model

The operation of the main program and the scheduling algorithm employed
depend primarily upon whether your model is single-rate or multirate, and
also upon your model’s solver mode (SingleTasking vs. MultiTasking).
These are described in detail in “Program Execution Overview” on page 1-11.

If you turn the Generate an example main program option off, the
Real-Time Workshop® Embedded Coder™ software provides a static version
of the file ert_main.c as a basis for your custom modifications (see “Static
Main Program Module” on page 1-26).

Note Once you have generated and customized the main program, you should
take care to turn Generate an example main program off to prevent
regenerating the main module and overwriting your customized version.

You can use a custom file processing (CFP) template file to override the normal
main program generation, and generate a main program module customized
for your target environment. To learn how to do this, see “Customizing Main
Program Module Generation” on page 6-46.

Program Execution Overview

Program Execution Overview

The following sections describe how programs generated by the Real-Time
Workshop® Embedded Coder™ software execute, from the top level down to
timer interrupt level:

e “Stand-Alone Program Execution” on page 1-12 describes the operation of
self-sufficient example programs that do not require an external real-time
executive or operating system.

¢ “Wind River Systems VxWorks® Example Main Program Execution” on
page 1-21 describes the operation of example programs designed for
deployment under the VxWorks® real-time operating system.

® “Model Entry Points” on page 1-24 describes the model entry-point functions
that are generated for both stand-alone and VxWorks example programs.

1-11

1 Data Structures, Code Modules, and Program Execution

1-12

Stand-Alone Program Execution

In this section...

“Overview” on page 1-12

“Main Program” on page 1-13

“rt_OneStep” on page 1-14

Overview

By default, the Real-Time Workshop® Embedded Coder™ software generates
stand-alone programs that do not require an external real-time executive or
operating system. A stand-alone program requires some minimal modification
to be adapted to the target hardware; these modifications are described in the
following sections. The stand-alone program architecture supports execution
of models with either single or multiple sample rates.

To generate a stand-alone program:

1 In the Custom templates subpane of the Real-Time
Workshop/Templates pane of the Configuration Parameters
dialog box, select the Generate an example main program option (this
option is on by default).

2 When Generate an example main program is selected, the Target
operating system pop-up menu is enabled. Select BareBoardExample
from this menu (this option is the default selection).

The core of a stand-alone program is the main loop. On each iteration, the
main loop executes a background or null task and checks for a termination
condition.

The main loop is periodically interrupted by a timer. The Real-Time
Workshop® function rt_OneStep is either installed as a timer interrupt
service routine (ISR), or called from a timer ISR at each clock step.

The execution driver, rt_OneStep, sequences calls to the model step
function(s). The operation of rt_OneStep differs depending on whether
the generating model is single-rate or multirate. In a single-rate model,

Stand-Alone Program Execution

rt_OneStep simply calls the model step function. In a multirate model,
rt_OneStep prioritizes and schedules execution of blocks according to the
rates at which they run.

The Real-Time Workshop Embedded Coder software generates significantly
different code for multirate models depending on the following factors:

® Whether the model executes in singletasking or multitasking mode.

® Whether or not reusable code is being generated.

These factors affect the scheduling algorithms used in generated code, and in
some cases affect the API for the model entry point functions. The following
sections discuss these variants.

Main Program

Overview of Operation
The following pseudocode shows the execution of a Real-Time Workshop
Embedded Coder main program.

main()
{
Initialization (including installation of rt_OneStep as an
interrupt service routine for a real-time clock)
Initialize and start timer hardware
Enable interupts
While(not Error) and (time < final time)
Background task
EndWhile
Disable interrupts (Disable rt_OneStep from executing)
Complete any background tasks
Shutdown

The pseudocode is a design for a harness program to drive your model. The
ert_main.c or .cpp program only partially implements this design. You must
modify it according to your specifications.

1-13

1 Data Structures, Code Modules, and Program Execution

1-14

Guidelines for Modifying the Main Program

This section describes the minimal modifications you should make in your
production version of ert_main.c or .cpp to implement your harness program.

o After calling model_initialize:

Initialize target-specific data structures and hardware such as ADCs
or DACs.

Install rt_OneStep as a timer ISR.
Initialize timer hardware.

Enable timer interrupts and start the timer.

Note rtModel is not in a valid state until model_initialize has
been called. Servicing of timer interrupts should not begin until
model_initialize has been called.

¢ Optionally, insert background task calls in the main loop.

¢ On termination of main loop (if applicable):

Disable timer interrupts.
Perform target-specific cleanup such as zeroing DACs.

Detect and handle errors. Note that even if your program is designed to
run indefinitely, you may need to handle severe error conditions such as
timer interrupt overruns.

You can use the macros rtmGetErrorStatus and rtmSetErrorStatus
to detect and signal errors.

rt_OneStep

Overview of Operation
The operation of rt_OneStep depends upon

¢ Whether your model is single-rate or multirate. In a single-rate model, the
sample times of all blocks in the model, and the model’s fixed step size, are

Stand-Alone Program Execution

the same. Any model in which the sample times and step size do not meet
these conditions is termed multirate.

® Your model’s solver mode (SingleTasking vs. MultiTasking)

Permitted Solver Modes for Real-Time Workshop® Embedded Coder™
Targeted Models on page 1-15 summarizes the permitted solver modes for
single-rate and multirate models. Note that for a single-rate model, only
SingleTasking solver mode is allowed.

Permitted Solver Modes for Real-Time Workshop® Embedded Coder™
Targeted Models

Mode Single-Rate Multirate

SingleTasking Allowed Allowed

MultiTasking Disallowed Allowed

Auto Allowed Allowed
(defaults to (defaults to MultiTasking)
SingleTasking)

The generated code for rt_OneStep (and associated timing data structures
and support functions) is tailored to the number of rates in the model and to
the solver mode. The following sections discuss each possible case.

Single-Rate Singletasking Operation
The only valid solver mode for a single-rate model is SingleTasking. Such
models run in “single-rate” operation.

The following pseudocode shows the design of rt_OneStep in a single-rate
program.

rt_OneStep()
{

Check for interrupt overflow or other error
Enable "rt_OneStep" (timer) interrupt
Model Step() -- Time step combines output,logging,update

}

1-15

1 Data Structures, Code Modules, and Program Execution

1-16

For the single-rate case, the generated model step function is

void model_step(void)

Single-rate rt_OneStep is designed to execute model step within a single
clock period. To enforce this timing constraint, rt_OneStep maintains and
checks a timer overrun flag. On entry, timer interrupts are disabled until the
overrun flag and other error conditions have been checked. If the overrun flag
is clear, rt_OneStep sets the flag, and proceeds with timer interrupts enabled.

The overrun flag is cleared only upon successful return from model step.
Therefore, if rt_OneStep is reinterrupted before completing model step, the
reinterruption is detected through the overrun flag.

Reinterruption of rt_0OneStep by the timer is an error condition. If this
condition is detected rt_OneStep signals an error and returns immediately.
(Note that you can change this behavior if you want to handle the condition
differently.)

Note that the design of rt_OneStep assumes that interrupts are disabled
before rt_OneStep is called. rt_OneStep should be noninterruptible until the
interrupt overflow flag has been checked.

Multirate Multitasking Operation

In a multirate multitasking system, the Real-Time Workshop Embedded
Coder software uses a prioritized, preemptive multitasking scheme to execute
the different sample rates in your model.

The following pseudocode shows the design of rt_OneStep in a multirate
multitasking program.

rt_OneStep()
{

Check for base-rate interrupt overrun
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step

Model StepO() -- run base-rate time step code

For N=1:NumTasks-1 -- iterate over sub-rate tasks

Stand-Alone Program Execution

If (sub-rate task N is scheduled)
Check for sub-rate interrupt overrun
Model StepN() -- run sub-rate time step code
EndIf
EndFor

}

Task Identifiers. The execution of blocks having different sample rates is
broken into tasks. Each block that executes at a given sample rate is assigned
a task identifier (tid), which associates it with a task that executes at that
rate. Where there are NumTasks tasks in the system, the range of task
identifiers is 0..NumTasks-1.

Prioritization of Base-Rate and Sub-Rate Tasks. Tasks are prioritized,
in descending order, by rate. The base-rate task is the task that runs at the
fastest rate in the system (the hardware clock rate). The base-rate task has
highest priority (tid 0). The next fastest task (tid 1) has the next highest
priority, and so on down to the slowest, lowest priority task (tid NumTasks-1).

The slower tasks, running at submultiples of the base rate, are called sub-rate
tasks.

Rate Grouping and Rate-Specific model_step Functions. In a single-rate
model, all block output computations are performed within a single function,
model_step. For multirate, multitasking models, the Real-Time Workshop
Embedded Coder software uses a different strategy (whenever possible).

This strategy is called rate grouping. Rate grouping generates separate
model_step functions for the base rate task and each sub-rate task in the
model. The function naming convention for these functions is

model_stepN

where N is a task identifier. For example, for a model named my_model that
has three rates, the following functions are generated:

void my_model stepO (void);

void my_model step1 (void);
void my_model step2 (void);

1-17

1 Data Structures, Code Modules, and Program Execution

1-18

Each model stepN function executes all blocks sharing tid N;in other words,
all block code that executes within task N is grouped into the associated
model_stepN function.

Scheduling model_stepN Execution. On each clock tick, rt_OneStep and
model step0 maintain scheduling counters and event flags for each sub-rate
task. The counters are implemented in the Timing.TaskCounters.TIDn fields
of rtModel. The event flags are implemented as arrays, indexed on tid.

The scheduling counters are maintained by the rate_monotonic_scheduler
function, which is called by model stepO (that is, in the base-rate task).
The function updates flags—an active task flag for each subrate and rate
transition flags for tasks that exchange data—and assumes the use of a
rate monotonic scheduler. The scheduling counters are, in effect, clock rate
dividers that count up the sample period associated with each sub-rate task.

The event flags indicate whether or not a given task is scheduled

for execution. rt_OneStep maintains the event flags with the
model_SetEventsForThisBaseStep function. When a counter indicates that
a task’s sample period has elapsed, model_ SetEventsForThisBaseStep sets
the event flag for that task.

On each invocation, rt_OneStep updates its scheduling data structures and
steps the base-rate task (rt_OneStep always calls model step0 because the
base-rate task must execute on every clock step). Then, rt_OneStep iterates
over the scheduling flags in tid order, unconditionally calling model_stepN
for any task whose flag is set. This ensures that tasks are executed in order of
priority.

Preemption. Note that the design of rt_OneStep assumes that interrupts are
disabled before rt_OneStep is called. rt_OneStep should be noninterruptible
until the base-rate interrupt overflow flag has been checked (see pseudocode
above).

The event flag array and loop variables used by rt_OneStep are stored as local
(stack) variables. This ensures that rt_OneStep is reentrant. If rt_OneStep is
reinterrupted, higher priority tasks preempt lower priority tasks. Upon return
from interrupt, lower priority tasks resume in the previously scheduled order.

Stand-Alone Program Execution

Overrun Detection. Multirate rt_OneStep also maintains an array of timer
overrun flags. rt_OneStep detects timer overrun, per task, by the same logic
as single-rate rt_OneStep.

Note If you have developed multirate S-functions, or if you use a
customized static main program module, see “Rate Grouping Compliance and
Compatibility Issues” on page 1-32 for information about how to adapt your
code for rate grouping compatibility. This adaptation lets your multirate,
multitasking models generate more efficient code.

Multirate Singletasking Operation

In a multirate singletasking program, by definition, all sample times in the
model must be an integer multiple of the model’s fixed-step size.

In a multirate singletasking program, blocks execute at different rates, but
under the same task identifier. The operation of rt_OneStep, in this case, is a
simplified version of multirate multitasking operation. Rate grouping is not
used. The only task is the base-rate task. Therefore, only one model step
function is generated:

void model step(int_T tid)

On each clock tick, rt_0OneStep checks the overrun flag and calls model step,
passing in tid 0. The scheduling function for a multirate singletasking
program is rate_scheduler (rather than rate_monotonic_scheduler). The
scheduler maintains scheduling counters on each clock tick. There is one
counter for each sample rate in the model. The counters are implemented in
an array (indexed on tid) within the Timing structure within rtModel.

The counters are, in effect, clock rate dividers that count up the sample period
associated with each sub-rate task. When a counter indicates that a sample
period for a given rate has elapsed, rate_scheduler clears the counter. This
condition indicates that all blocks running at that rate should execute on the
next call to model step, which is responsible for checking the counters.

1-19

1 Data Structures, Code Modules, and Program Execution

1-20

Guidelines for Modifying rt_OneStep

rt_OneStep does not require extensive modification. The only required
modification is to re-enable interrupts after the overrun flag(s) and error
conditions have been checked. If applicable, you should also

¢ Save and restore your FPU context on entry and exit to rt_OneStep.
¢ Set model inputs associated with the base rate before calling model step0.

® Get model outputs associated with the base rate after calling model stepO.

¢ In a multirate, multitasking model, set model inputs associated with
sub-rates before calling model stepN in the sub-rate loop.

¢ In a multirate, multitasking model, get model outputs associated with
sub-rates after calling model stepN in the sub-rate loop.

Comments in rt_OneStep indicate the appropriate place to add your code.

In multirate rt_OneStep, you can improve performance by unrolling for
and while loops.

In addition, you may choose to modify the overrun behavior to continue
execution after error recovery is complete.

You should not modify the way in which the counters, event flags, or other
timing data structures are set in rt_OneStep, or in functions called from
rt_OneStep. The rt_OneStep timing data structures (including rtModel) and
logic are critical to correct operation of any Real-Time Workshop Embedded
Coder program.

Wind River Systems VxWorks® Example Main Program Execution

Wind River Systems VxWorks® Example Main Program

Execution

In this section...

“Overview” on page 1-21

“Task Management” on page 1-22

Overview

The Real-Time Workshop® Embedded Coder™ product provides a Wind River
Systems VxWorks® example main program as a template for the deployment
of generated code in a real-time operating system (RTOS) environment.

You should read the preceding sections of this chapter as a prerequisite to
working with the VxWorks example main program. An understanding of the
Real-Time Workshop Embedded Coder scheduling and tasking concepts and
algorithms, described in “Stand-Alone Program Execution” on page 1-12, is
essential to understanding how generated code is adapted to an RTOS.

In addition, an understanding of how tasks are managed under the VxWorks
RTOS is required. See your VxWorks documentation.

To generate a VxWorks example program:

1 In the Custom templates subpane of the Real-Time
Workshop/Templates pane of the Configuration Parameters
dialog box, select the Generate an example main program option (this
option is on by default).

2 When Generate an example main program is selected, the Target
operating system pop-up menu is enabled. Select VxWorksExample from
this menu.

Some modifications to the generated code are required; comments in the
generated code identify the required modifications.

1-21

1 Data Structures, Code Modules, and Program Execution

1-22

Task Management

In a VxWorks example program, the main program and the base rate and
sub-rate tasks (if any) run as prioritized tasks. The logic of a VxWorks example
program parallels that of a stand-alone program; the main difference lies in
the fact that base rate and sub-rate tasks are activated by clock semaphores
managed by the operating system, rather than directly by timer interrupts.

Your application code must spawn model main() as an independent VxWorks
task. The task priority you specify is passed in to model main().

As with a stand-alone program, the VxWorks example program architecture
is tailored to the number of rates in the model and to the solver mode

(see Permitted Solver Modes for Real-Time Workshop® Embedded Coder™
Targeted Models on page 1-15). The following sections discuss each possible
case.

Single-Rate Singletasking Operation

In a single-rate, singletasking model, model main() spawns a base rate task,
tBaseRate. In this case tBaseRate is the functional equivalent to rtOneStep.
The base rate task is activated by a clock semaphore provided by the VxWorks
RTOS, rather than by a timer interrupt. On each activation, tBaseRate calls
model_step.

Note that the clock rate granted by the VxWorks RTOS may not be the same
as the rate requested by model_main.

Multirate Multitasking Operation

In a multirate, multitasking model, model main() spawns a base rate task
and sub-rate tasks. Task priorities are assigned by rate.

As in a stand-alone program, rate grouping code is used (where possible)

for multirate, multitasking models. The base rate task calls model step0,
while the sub-rate tasks call model stepN. The base rate task calls a function
that updates flags—an active task flag for each subrate and rate transition
flags for tasks that exchange data. This function assumes the use of a
rate-monotonic scheduler.

Wind River Systems VxWorks® Example Main Program Execution

Multirate Singletasking Operation

In a multirate, singletasking model, model main() spawns only a base rate
task, tBaseRate. All rates run under this task. The base rate task is activated
by a clock semaphore provided by the VxWorks RTOS, rather than by a timer
interrupt. On each activation, tBaseRate calls model step.

model_step in turn calls the rate_scheduler utility, which maintains the

scheduling counters that determine which rates should execute. model step
is responsible for checking the counters.

1-23

1 Data Structures, Code Modules, and Program Execution

1-24

Model Entry Points

The following functions represent entry points in the generated code for a
Simulink® model.

Function Description

model initialize Initialization entry point in
generated code for Simulink model

model_SetEventsForThisBaseStep Set event flags for multirate,
multitasking operation before calling
model_step for Simulink model

model step Step routine entry point in generated
code for Simulink model

model_terminate Termination entry point in generated
code for Simulink model

Note that the calling interface generated for each of these functions differs
significantly depending on how you set the Generate reusable code option
(see “Configuring Model Interfaces” on page 2-22).

By default, Generate reusable code is off, and the model entry point
functions access model data with statically allocated global data structures.

When Generate reusable code is on, model data structures are passed in
(by reference) as arguments to the model entry point functions. For efficiency,
only those data structures that are actually used in the model are passed in.
Therefore when Generate reusable code is on, the argument lists generated
for the entry point functions vary according to the requirements of the model.

The entry points are exported with model.h. To call the entry-point functions
from your hand-written code, add an #include model.h directive to your
code. If Generate reusable code is on, you must examine the generated
code to determine the calling interface required for these functions.

Model Entry Points

For more information, see the reference pages for the listed functions.

Note The function reference pages document the default (Generate
reusable code off) calling interface generated for these functions.

1-25

1 Data Structures, Code Modules, and Program Execution

1-26

Static Main Program Module

In this section...

“Overview” on page 1-26

“Rate Grouping and the Static Main Program” on page 1-28

“Modifying the Static Main Program” on page 1-29

Overview

In most cases, the easiest strategy for deploying your generated code is to
use the Generate an example main program option to generate the
ert_main.c or .cpp module (see “Generating the Main Program Module”
on page 1-9).

However, if you turn the Generate an example main program option off,
you can use the module matlabroot/rtw/c/ert/ert_main.c as a template
example for developing your embedded applications. The module is not part of
the generated code; it is provided as a basis for your custom modifications,
and for use in simulation. If your existing applications, developed prior to this
release, depend upon a static ert_main.c, you may need to continue using
this module.

When developing applications using a static ert_main.c, you should copy this
module to your working directory and rename it to model ert main.c before
making modifications. Also, you must modify the template makefile such that
the build process creates model ert _main.obj (on Unix, model ert _main.o)
in the build directory.

The static ert_main.c contains

® rt_OneStep, a timer interrupt service routine (ISR). rt_OneStep calls
model step to execute processing for one clock period of the model.

o A skeletal main function. As provided, main is useful in simulation only.

You must modify main for real-time interrupt-driven execution.

For single-rate models, the operation of rt_OneStep and the main function
are essentially the same in the static version of ert_main.c as they are in the

Static Main Program Module

autogenerated version described in “Stand-Alone Program Execution” on page
1-12. For multirate, multitasking models, however, the static and generated
code is slightly different. The next section describes this case.

1-27

1 Data Structures, Code Modules, and Program Execution

1-28

Rate Grouping and the Static Main Program

Targets based on the ERT target sometimes use a static ert_main module and
disallow use of the Generate an example main program option. This
may be necessary because target-specific modifications have been added to
the static ert_main.c, and these modifications would not be preserved if

the main program were regenerated.

Your ert_main module may or may not use rate grouping compatible
model stepN functions. If your ert_main module is based on the static
ert_main.c module, it does not use rate-specific model stepN function
calls. The static ert_main.c module uses the old-style model step function,
passing in a task identifier:

void model_step(int_T tid);

By default, when the Generate an example main program option is off,
the ERT target generates a model step “wrapper” for multirate, multitasking
models. The purpose of the wrapper is to interface the rate-specific
model_stepN functions to the old-style call. The wrapper code dispatches

to the appropriate model stepN call with a switch statement, as in the
following example:

void mymodel_step(int_T tid) /* Sample time: */
{

switch(tid) {
case 0 :
mymodel_stepO();
break;
case 1
mymodel_stepi();
break;
case 2 :
mymodel_step2();
break;
default :
break;

}

Static Main Program Module

The following pseudocode shows how rt_OneStep calls model_step from the
static main program in a multirate, multitasking model.

rt_OneStep()

{
Check for base-rate interrupt overflow
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step
ModelStep(tid=0) --base-rate time step
For N=1:NumTasks-1 -- iterate over sub-rate tasks
Check for sub-rate interrupt overflow
If (sub-rate task N is scheduled)
ModelStep (tid=N) --sub-rate time step
EndIf
EndFor
}

You can use the TLC variable RateBasedStepFcn to specify that only the
rate-based step functions are generated, without the wrapper function. If your
target calls the rate grouping compatible model stepN function directly, set
RateBasedStepFcn to 1. In this case, the wrapper function is not generated.

You should set RateBasedStepFcn prior to the $include "codegenentry.tlc"
statement in your system target file. Alternatively, you can set
RateBasedStepFcn in your target settings.tlc file.

Modifying the Static Main Program

As in the generated ert_main.c, a few modifications to the main loop and
rt_OneStep are necessary. See “Guidelines for Modifying the Main Program”
on page 1-14 and “Guidelines for Modifying rt_OneStep” on page 1-20.

Also, you should replace the rt_OneStep call in the main loop with a
background task call or null statement.

1-29

1 Data Structures, Code Modules, and Program Execution

1-30

Other modifications you may need to make are

¢ If your model has multiple rates, the generated code does not operate

correctly unless:

= The multirate scheduling code is removed. The relevant code is tagged
with the keyword REMOVE in comments (see also the Version 3.0
comments in ert_main.c).

= Use the MODEL_SETEVENTS macro (defined in ert_main.c) to set the
event flags instead of accessing the flags directly. The relevant code is
tagged with the keyword REPLACE in comments.

Remove old #include ertformat.h directives. ertformat.h will be
obsoleted in a future release. The following macros, formerly defined in
ertformat.h, are now defined within ert_main.c:

EXPAND_CONCAT
CONCAT
MODEL_INITIALIZE
MODEL_STEP
MODEL_TERMINATE
MODEL_SETEVENTS
RT_OBJ

See also the comments in ertformat.h.

If applicable, follow comments in the code regarding where to add code for
reading/writing model I/O and saving/restoring FPU context.

When the Generate an example main program option is off, the
Real-Time Workshop® Embedded Coder™ software generates the file
autobuild.h to provide an interface between the main module and
generated model code. If you create your own static main program module,
you would normally include autobuild.h.

Alternatively, you can suppress generation of autobuild.h, and include
model.h directly in your main module. To suppress generation of
autobuild.h, use the following statement in your system target file:

%assign AutoBuildProcedure = 0

Static Main Program Module

If you have cleared the Terminate function required option, remove or
comment out the following in your production version of ert_main.c:

= The #if TERMFCN... compile-time error check
= The call to MODEL_TERMINATE

If you do not want to combine output and update functions, clear the Single
output/update function option and make the following changes in your
production version of ert_main.c:

= Replace calls to MODEL_STEP with calls to MODEL_OUTPUT and
MODEL_UPDATE.

= Remove the #if ONESTEPFCN. .. error check.

The static ert_main.c module does not support the Generate Reusable
Code option. Use this option only if you are generating a main program.
The following error check raises a compile-time error if Generate
Reusable Code is used illegally.

#if MULTI_INSTANCE_CODE==

The static ert_main.c module does not support the External mode option.
Use this option only if you are generating a main program. The following
error check raises a compile-time error if External mode is used illegally.

#ifdef EXT_MODE

1-31

1 Data Structures, Code Modules, and Program Execution

1-32

Rate Grouping Compliance and Compatibility Issues

In this section...

“Main Program Compatibility” on page 1-32

“Making Your S-Functions Rate Grouping Compliant” on page 1-32

Main Program Compatibility

When the Generate an example main program option is off, the Real-Time
Workshop® Embedded Coder™ software generates slightly different rate
grouping code, for compatibility with the older static ert_main.c module. See
“Rate Grouping and the Static Main Program” on page 1-28 for details.

Making Your S-Functions Rate Grouping Compliant

All built-in Simulink® blocks, as well as all Signal Processing Blockset™
blocks, are compliant with the requirements for generating rate grouping
code. However, user-written multirate inlined S-functions may not be rate
grouping compliant. Non-compliant blocks generate less efficient code, but
are otherwise compatible with rate grouping. To take full advantage of

the efficiency of rate grouping, your multirate inlined S-functions must be
upgraded to be fully rate grouping compliant. You should upgrade your TLC
S-function implementations, as described in this section.

Use of non-compliant multirate blocks to generate rate-grouping code
generates dead code. This can cause two problems:

¢ Reduced code efficiency.

¢ Warning messages issued at compile time. Such warnings are caused when
dead code references temporary variables before initialization. Since the
dead code never runs, this problem does not affect the run-time behavior of
the generated code.

To make your S-functions rate grouping compliant, you can use the following
TLC functions to generate ModelOutputs and ModelUpdate code, respectively:

OutputsForTID(block, system, tid)
UpdateForTID(block, system, tid)

Rate Grouping Compliance and Compatibility Issues

The code listings below illustrate generation of output computations without
rate grouping (Listing 1) and with rate grouping (Listing 2). Note the
following:

® The tid argument is a task identifier (0. .NumTasks-1).

® Only code guarded by the tid passed in to OutputsForTID is generated.
The if (%<LibIsSFcnSampleHit (portName)>) test is not used in
OutputsForTID.

® When generating rate grouping code, OutputsForTID and/or UpdateForTID
is called during code generation. When generating non-rate-grouping code,
Outputs and/or Update is called.

® In rate grouping compliant code, the top-level Outputs and/or Update
functions call QutputsForTID and/or UpdateForTID functions for each rate
(tid) involved in the block. The code returned by OutputsForTID and/or
UpdateForTID must be guarded by the corresponding tid guard:

if (%<LibIsSFcnSampleHit(portName)>)
as in Listing 2.

Listing 1: Outputs Code Generation Without Rate Grouping

%% multirate_blk.tlc

%simplements "multirate_blk" "C"

of

% Function: mdlOutputs
% Abstract:

® o
o°

o
&

Compute the two outputs (input signal decimated by the

o°
o°

specified parameter). The decimation is handled by sample times.

P
o°

The decimation is only performed if the block is enabled.

o®
o°

Each ports has a different rate.

o°
o°

P
o°

Note, the usage of the enable should really be protected such that

o°
o°

Neach task has its own enable state. In this example, the enable

of

% occurs immediately which may or may not be the expected behavior.

1-33

1 Data Structures, Code Modules, and Program Execution

o°
o°

sfunction Outputs(block, system) Output
/* %<Type> Block: %<Name> */

%assign enable = LibBlockInputSignal(o, "", "", 0)
{
int_T *enabled = &%<LibBlockIWork(0, "", "", 0)>;
%if LibGetSFcnTIDType("InputPortIdx0") == "continuous"

%% Only check the enable signal on a major time step.
if (%<LibIsMajorTimeStep()> && ...
%<LibIsSFcnSampleHit ("InputPortIdx0")>) {
*enabled = (%<enable> > 0.0);
}
%else
if (%<LibIsSFcnSampleHit("InputPortIdx0")>) {
*enabled = (%<enable> > 0.0);
}

%sendif

if (*enabled) {

%assign signal = LibBlockInputSignal(1, "", "", 0)

if (%<LibIsSFcnSampleHit("OutputPortIdx0")>) {
%assign y = LibBlockOutputSignal(o, "", "", 0)
%<y> = %<signal>;

}

if (%<LibIsSFcnSampleHit("OutputPortIdx1")>) {
%sassign y = LibBlockOutputSignal(t, "", "", 0)

%<y> = %<signal>;

%sendfunction
%% [EOF] sfun_multirate.tlc

Listing 2: Outputs Code Generation With Rate Grouping

%% example_multirateblk.tlc

%simplements "example_multirateblk" "C"

1-34

Rate Grouping Compliance and Compatibility Issues

o°
o°

Function: mdlOutputs
Abstract:

® o
o°® o°

o°
o°

Compute the two outputs (the input signal decimated by the

o
o°

specified parameter). The decimation is handled by sample times.

o°
o°

The decimation is only performed if the block is enabled.

o
o°

All ports have different sample rate.

o
o°

o
o°

Note: the usage of the enable should really be protected such that
each task has its own enable state. In this example, the enable

o
o°

o°
o°

occurs immediately which may or may not be the expected behavior.

o
o°

sfunction Outputs(block, system) Output

%assign portIdxName = ["InputPortIdx0","OutputPortIdx0","OutputPortIdx1"]
%assign portTID = [%<LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")>,
%<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")>,

%<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")>]
%sforeach i = 3

%assign portName = portIdxName[i]

%assign tid = portTID[i]

if (%<LibIsSFcnSampleHit(portName)>) {

%<OutputsForTID(block,system,tid)>
}

%endforeach
%sendfunction

sfunction OutputsForTID(block, system, tid) Output
/* %<Type> Block: %<Name> */

%assign enable = LibBlockInputSignal(o, "", "", 0)
%assign enabled = LibBlockIWork(0, "", "", 0)
%assign signal = LibBlockInputSignal(1, "", "", 0)
sswitch(tid)

%case LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")

1-35

1 Data Structures, Code Modules, and Program Execution

1-36

%if LibGetSFcnTIDType("InputPortIdx0") == "continuous"
%% Only check the enable signal on a major time step.
if (%<LibIsMajorTimeStep()>) {

%<enabled> = (%<enable> > 0.0);
}

%else
%<enabled> = (%<enable> > 0.0);

%sendif

sbreak

%case LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")

if (%<enabled>) {

%assign y = LibBlockOutputSignal(0O, "", "", 0)
%<y> = %<signal>;

}

sbreak

%case LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")

%default

%sendswitch

%sendfunction

if (%<enabled>) {

%assign y = LibBlockOutputSignal(1, "", "", 0)
%<y> = %<signal>;

}

sbreak

%% error it out

%% [EOF] sfun_multirate.tlc

Code Generation Options
and Optimizations

Accessing the ERT Target Options
(p. 2-3)

Support for Continuous Time Blocks,
Continuous Solvers, and Stop Time
(p. 2-5)

Mapping Application Requirements
to Configuration Options (p. 2-7)

Configuring a Model (p. 2-8)

Tips for Optimizing the Generated
Code (p. 2-34)

GUIs for viewing and configuring
ERT target options.

Summarizes ERT target support for
continuous time blocks, continuous
solvers, and stop time.

Discusses the process of mapping
application requirements to code
generation options in a model
configuration set, particularly with
respect to traceability, efficiency, and
safety.

Describes code generation options
that are specific to the ERT target.

Utilities and code generation options
you can use to automatically
configure models, improve
performance and reduce code

size.

2 Code Generation Options and Optimizations

Creating and Using a Code
Generation Report (p. 2-44)

Automatic S-Function Wrapper
Generation (p. 2-55)

Verifying Generated Code with
Software-in-the-loop Testing
(p. 2-59)

Exporting Function-Call Subsystems
(p. 2-64)

Nonvirtual Subsystem Modular
Function Code Generation (p. 2-75)

Controlling model_step Function
Prototypes (p. 2-88)

Creating and Using Host-Based
Shared Libraries (p. 2-107)

Describes how to generate a report
including information on the
generated code and suggestions

for optimization. You can view the
report in any HTML browser. The
report supports bidirectional tracing
between the generated code and the
source blocks in your model.

Explains how to integrate your
Real-Time Workshop® Embedded
Coder™ code into a model by
generating ERT S-function
wrappers.

Explains how to use host-based
software-in-the-loop (SIL) testing to
validate generated code.

Describes code export capabilities for
function-call subsystems.

Explains how to generate atomic
subsystem function code that
separates the subsystem’s internal
data from the data of its parent
Simulink® model.

Explains how to configure
model_step function prototypes
in generated code.

Describes how to generate a shared
library version of your model code
for use by applications on your
Microsoft® Windows® or The Open
Group UNIX® platform.

Accessing the ERT Target Options

Accessing the ERT Target Options

In this section...

“Introduction” on page 2-3

“Viewing ERT Target Options in the Configuration Parameters Dialog Box
or Model Explorer” on page 2-4

Introduction

This chapter explains how to use the Embedded Real-Time (ERT) target code
generation options to configure models for production code generation. The
discussion also includes other options that are not specific to the ERT target,
but which affect ERT code generation.

Every model contains one or more named configuration sets that specify model
parameters such as solver options, code generation options, and other choices.
A model can contain multiple configuration sets, but only one configuration
set is active at any time. A configuration set includes code generation options
that affect Real-Time Workshop® code generation in general, and options that
are specific to a given target, such as the ERT target.

Configuration sets can be particularly useful in embedded systems
development. By defining multiple configuration sets in a model, you

can easily retarget code generation from that model. For example, one
configuration set might specify the default ERT target with external mode
support enabled for rapid prototyping, while another configuration set might
specify the Target Support Package™ FM5 to generate production code for
deployment of the application. Activation of either configuration set fully
reconfigures the model for the appropriate type of code generation.

Before you work with the ERT target options, you should become familiar with

¢ Configuration sets and how to view and edit them in the Configuration
Parameters dialog box. The Using Simulink® document contains detailed
information on these topics.

¢ Real-Time Workshop code generation options and the use of the System
Target File Browser. The Real-Time Workshop documentation contains
detailed information on these topics.

2 Code Generation Options and Optimizations

24

For descriptions of the Embedded Real-Time (ERT) target code generation
options, see “Configuration Parameters” in the Real-Time Workshop®
Embedded Coder™ reference documentation.

Viewing ERT Target Options in the Configuration
Parameters Dialog Box or Model Explorer

The Configuration Parameters dialog box and Model Explorer provide

the quickest routes to a model’s active configuration set. Illustrations
throughout this chapter and “Configuration Parameters” in the Real-Time
Workshop Embedded Coder reference documentation show the Configuration
Parameters dialog box view of model parameters (unless otherwise noted).

Support for Continuous Time Blocks, Continuous Solvers, and Stop Time

Support for Continuous Time Blocks, Continuous Solvers,
and Stop Time

In this section...

“Generating Code for Continuous Time Blocks” on page 2-5

“Generating Code that Supports Continuous Solvers” on page 2-5

“Generating Code that Honors a Stop Time” on page 2-6

Generating Code for Continuous Time Blocks

The ERT target supports code generation for continuous time blocks. If the
Support continuous time option is selected, you can use any such blocks
in your models, without restriction.

Note that use of certain blocks is not recommended for production code
generation for embedded systems. The Simulink® Block Data Type Support
table summarizes characteristics of blocks in the Simulink and Simulink®
Fixed Point™ block libraries, including whether or not they are recommended
for use in production code generation. To view this table, execute the following
command at the MATLAB® command line:

showblockdatatypetable

Then, refer to the “Code Generation Support” column of the table.

Generating Code that Supports Continuous Solvers

The ERT target supports continuous solvers. In the Solver options dialog,
you can select any available solver in the Solver menu. (Note that the solver
Type must be fixed-step for use with the ERT target.)

Note Custom targets must be modified to support continuous time. The
required modifications are described in the Developing Embedded Targets
document.

2 Code Generation Options and Optimizations

Generating Code that Honors a Stop Time

The ERT target supports the stop time for a model. When generating
host-based executables, the stop time value is honored when any one of the
following is true:

* GRT compatible call interface is selected on the Interface pane

¢ External mode is selected in the Data exchange subpane of the
Interface pane

o MAT-file logging is selected on the Interface pane

Otherwise, the executable runs indefinitely.

Note The ERT target provides both generated and static examples of
the ert_main.c file. The ert_main.c file controls the overall model code
execution by calling the model step function and optionally checking the
ErrorStatus/StopRequested flags to terminate execution. For a custom
target, if you provide your own custom static main.c, you should consider
including support for checking these flags.

Mapping Application Requirements to Configuration Options

Mapping Application Requirements to Configuration

Options

The first step to applying Real-Time Workshop® Embedded Coder™
configuration options to the application development process is to consider
how your application requirements, particularly with respect to traceability,
efficiency, and safety, map to code generation options in a model configuration
set.

Parameters that you set in the Solver, Data Import/Export, Diagnostics,
and Real-Time Workshop panes of the Configuration Parameters dialog
box affect the behavior of a model in simulation and the code generated for
the model.

Consider questions such as the following:

® What settings might help you debug your application?

® What is the highest priority for your application — debugging, traceability,
efficiency, extra safety precaution, or some other criteria?

® What is the second highest priority?

® Can the priority at the start of the project differ from the priority required
for the end result? What tradeoffs can be made?

Once you have answered these questions, review “Mapping of Application
Requirements to the Optimization Pane”. This table maps requirements of
debugging, traceability, efficiency, and safety precautions to configuration
parameters that are available for the Embedded Real-Time (ERT) target.

2 Code Generation Options and Optimizations

Configuring a Model

In this section...

“Selecting an ERT Target” on page 2-8

“Generating a Report that Includes Hyperlinks for Tracing Code to Model
Blocks” on page 2-10

“Customizing Comments in Generated Code” on page 2-11
“Customizing Generated Identifiers” on page 2-13
“Configuring Symbols” on page 2-14

“Configuring Model Interfaces” on page 2-22

“Controlling Code Style” on page 2-27

“Configuring Templates for Customizing Code” on page 2-28
“Configuring the Placement of Data in Code” on page 2-29
“Configuring Replacement Data Types ” on page 2-29

“Configuring Memory Sections” on page 2-31

“Configuring Optimizations” on page 2-32

Selecting an ERT Target

The Browse button in the Target Selection subpane of the Real-Time
Workshop > General pane lets you select an ERT target with the System
Target File Browser. See “Choosing and Configuring Your Target” in the
Real-Time Workshop® documentation for a general discussion of target
selection.

To make it easier for you to generate code that is optimized for your target
hardware, the code generator provides three variants of the ERT target that

e Automatically configure parameters that are optimized for fixed-point
code generation

® Automatically configure parameters that are optimized for floating-point
code generation

¢ Applies default parameter settings

Configuring a Model

The discussion throughout this chapter assumes use of the default ERT target.

These targets are based on a common system target file, ert.tlc. They are
displayed in the System Target File Browser as shown in the figure below.

x|
System target file: Description:
Real-Time Workshop Embedded Coder (no auto configuration)
ert.tlc Real-Time Workshop Enbedded Coder {(auto configures for optimized fisx
ert.tlc Real-Time Workshop Enbedded Coder {(auto configures for optimized flo
ert.tlc Vi=zual C-C++ Project Hakefile only for the Real-Time Workshop Embedd
ert_shrlib. tlc Real-Time Workshop Enbedded Coder (host-based shared library target)
grt.tlc Generic Real-Time Target
grt.tlc Vi=zual CrC++ Project Hakefile only for the "grt" target
grt_malloc. tlc Generic Real-Time Target with dynamic memory allocation -
i of
Full name: E:\matlabhwhchetiert e

Template make file: ert_default_traf
Make command: make_rtw

ok I Cancel | Help | Apply |

The optimized ERT target variants are discussed in detail in “Generating
Efficient Code with Optimized ERT Targets” on page 6-24.

You can implement a custom auto-configuring target, using the same
mechanism used by the optimized ERT target variants. “Auto-Configuring
Models for Code Generation” on page 6-20 discusses the auto-configuration
mechanism and utilities used by the optimized ERT target variants.

You can use the ert_shrlib.tlc target to generate a host-based shared
library from your Simulink® model. Selecting this target allows you to
generate a shared library version of your model code that is appropriate

for your host platform, either a Microsoft® Windows® dynamic link library
(.d11) file or a UNIX®! shared object (.so) file. This feature can be used to
package your source code securely for easy distribution and shared use. For
more information, see “Creating and Using Host-Based Shared Libraries” on
page 2-107.

1. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-9

2 Code Generation Options and Optimizations

2-10

Generating a Report that Includes Hyperlinks for
Tracing Code to Model Blocks

Real-Time Workshop® Embedded Coder™ software extends the HTML code
generation report that gets generated when you select the Create code
generation report parameter. When you select this parameter for an ERT
target, the parameters Code-to-model and Model-to-code appear. If you
select these additional parameters, the HTML report includes hyperlinks
from the code to the generating blocks in the model and right-clicking on the
blocks in the model brings you to the code for that block. You can use these
links to verify traceability of the generated code to the model.

For very large models (containing over 1000 blocks) generation of the
hyperlinks can be time consuming. Therefore, if you do not have a need for
traceability or after verifying the traceability of you generated code, consider
disabling the parameter to speed up code generation.

For more information, see “Code-to-model” and “Model-to-code” in the
Real-Time Workshop reference documentation.

Configuring a Model

Customizing Comments in Generated Code

You can customize the comments in the generated code for ERT
targets by setting or clearing several parameters on the Real-Time

Workshop > Comments pane. These options let you enable or suppress

generation of descriptive information in comments for blocks and other

objects in the model.

TO...

Select...

Include the text specified in the Description
field of a block’s Block Properties dialog box as
comments in the code generated for each block

Simulink block descriptions.

Add a comment that includes the blockname at
the start of the code for each block

Simulink block descriptions

Include the text specified in the Description
field of a Simulink data object (such as a
signal, parameter, data type, or bus) in the
Simulink Model Explorer as comments in the
code generated for each object

Simulink data object descriptions.

Include comments just above signals and
parameter identifiers in the generated code as
specified in an M-code or TLC function.

Custom comments (MPT objects only).

Include the text specified in the Description
field of the Properties dialog box for a
Stateflow® object as comments just above the
code generated for each object

Stateflow object descriptions .

Include requirements assigned to Simulink
blocks in the generated code comments (for
more information, see “Including Requirements
with Generated Code” in the Simulink®
Verification and Validation™ documentation)

Requirements in block comments.

When you select Simulink block descriptions,

¢ The description text for blocks and Stateflow objects and block names

generated as comments can include international (non-US-ASCII)

characters. (For details on international character support, see “Support

2-11

2 Code Generation Options and Optimizations

for International (Non-US-ASCII) Characters” in the Real-Time Workshop
documentation.)

¢ For virtual blocks or blocks that have been removed due to block reduction,
no comments are generated.

For more information, see “Real-Time Workshop Pane: Comments” in the
Real-Time Workshop reference documentation.

2-12

Configuring a Model

Customizing Generated ldentifiers

Several parameters are available for customizing generated symbols.

To...

Specify...

Define a macro string that specifies whether,
and in what order, certain substrings are
included within generated identifiers for global
variables, global types, field names of global
types, subsystem methods, local temporary
variables, local block output variables, and
constant macros

The macro string with the Identifier format
control parameter (for details on how to
specify formats, see “Specifying Identifier
Formats” on page 2-14 and for limitations,
see “Identifier Format Control Parameters
Limitations” on page 2-20).

Specify the minimum number of characters the
code generator uses for mangled symbols

Specify an integer value for the Minimum
mangle length (for details, see “Name
Mangling” on page 2-17).

Specify the maximum number of characters the
code generator can use for function, typedef,
and variable names (default 31)

Specify an integer value for the Maximum
identifier length. If you expect your model
to generate lengthy identifiers (due to use of
long signal or parameter names, for example),
or you find that identifiers are being mangled
more than expected, you should increase the
value of this parameter.

Control whether scalar inlined parameter
values are expressed in generated code as
literal values or macros

The value Literals or Macros for the
Generate scalar inlined parameters as
parameter

e Literals: Parameters are expressed as
numeric constants and takes effect if Inline
parameters is selected.

e Macros: Parameters are expressed as
variables (with #define macros). This
setting makes code more readable.

For more information, see “Real-Time Workshop Pane: Symbols” in the
Real-Time Workshop reference documentation.

2-13

2 Code Generation Options and Optimizations

Configuring Symbols

¢ “Specifying Simulink® Data Object Naming Rules” on page 2-14

® “Specifying Identifier Formats” on page 2-14

o “Name Mangling” on page 2-17
® “Traceability” on page 2-18

® “Minimizing Name Mangling” on page 2-19

® “Model Referencing Considerations” on page 2-19

e “Exceptions to Identifier Formatting Conventions” on page 2-20

¢ “Identifier Format Control Parameters Limitations” on page 2-20

Specifying Simulink® Data Object Naming Rules

To Define Rules that Change the
Names of a Model’s...

Specify a Naming Rule with the

Signals

Signal naming parameter

Parameters

Parameter naming parameter

Parameters that have a storage class
of Define

#define naming parameter

For more information on these parameters, see “Specifying Simulink Data
Object Naming Rules” in the Real-Time Workshop Embedded Coder Module

Packaging Features document.

Specifying Identifier Formats

The Identifier format control parameters let you customize generated
identifiers by entering a macro string that specifies whether, and in what
order, certain substrings are included within generated identifiers. For
example, you can specify that the root model name be inserted into each

identifier.

The macro string can include

2-14

Configuring a Model

® Tokens of the form $X, where X is a single character. Valid tokens are listed
in Identifier Format Tokens on page 2-15. You can use or omit tokens as
you want, with the exception of the $M token, which is required (see “Name
Mangling” on page 2-17) and subject to the use and ordering restrictions
noted in Identifier Format Control Parameter Values on page 2-16.

® Any valid C or C++ language identifier characters (a-z, A-Z, _, 0-9).

The build process generates each identifier by expanding tokens (in the
order listed in Identifier Format Tokens on page 2-15) and inserting the
resultant strings into the identifier. Character strings between tokens are
simply inserted directly into the identifier. Contiguous token expansions are
separated by the underscore (_) character.

Identifier Format Tokens

Token Description

$M Insert name mangling string if required to avoid naming
collisions (see “Name Mangling” on page 2-17). Note: This
token is required.

$F Insert method name (for example, Update for update method).
This token is available only for subsystem methods.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing any

unsupported characters with the underscore (_) character. Note
that when using model referencing, this token is required in
addition to $M (see “Model Referencing Considerations” on page
2-19).

Note: This token replaces the Prefix model name to global
identifiers option used in previous releases.

2-15

2 Code Generation Options and Optimizations

2-16

Identifier Format Tokens (Continued)

Token

Description

$H

Insert tag indicating system hierarchy level. For root-level
blocks, the tag is the string root_. For blocks at the subsystem
level, the tag is of the form sN_, where N is a unique system
number assigned by the Simulink software. This token is
available only for subsystem methods and field names of global

types.

Note: This token replaces the Include System Hierarchy
Number in Identifiers option used in previous releases.

$A

Insert data type acronym (for example, 132 for long integers) to
signal and work vector identifiers. This token is available only
for local block output variables and field names of global types.

Note: This token replaces the Include data type acronym in
identifier option used in previous releases.

Identifier Format Control Parameter Values on page 2-16 lists the default
macro string, the supported tokens, and the applicable restrictions for each
Identifier format control parameter.

Identifier Format Control Parameter Values

Default | Supported

Parameter Value Tokens Restrictions

Global
variables

SRENSM $R, $N, $M $F, $H, and $A are disallowed.

Global types SNSRSM $N, $R, $M $F, $H, and $A are disallowed.

Field name of SNS$M SN, $M, $H, | $R and $F are disallowed.

global types $A

Subsystem SRENSMSF | $R, $N, $M, | $F and $H are empty for

methods $F, $H Stateflow functions; $A is
disallowed.

Configuring a Model

Identifier Format Control Parameter Values (Continued)

Default | Supported
Parameter Value Tokens Restrictions
Local SNSM $N, $M, $R $F, $H, and $A are disallowed.
temporary
variables
Local block rtb_NM | SN, $M, $A $R, $F, and $H are disallowed.
output
variables
Constant SRENSM $R, $N, $M $F, $H, and $A are disallowed.
macros

Non-ERT based targets (such as the GRT target) implicitly use a default
RENSM specification. This specifies identifiers consisting of the root model
name, followed by the name of the generating object (signal, parameter,
state, and so on), followed by a name mangling string (see “Name Mangling”
on page 2-17).

For limitations that apply to Identifier format control parameters, see
“Identifier Format Control Parameters Limitations” on page 2-20.

Name Mangling

In identifier generation, a circumstance that would cause generation of two or
more identical identifiers is called a name collision. Name collisions are never
permissible. When a potential name collision exists, unique name mangling
strings are generated and inserted into each of the potentially conflicting
identifiers. Each name mangling string is guaranteed to be unique for each
generated identifier.

The position of the $M token in the Identifier format control parameter
specification determines the position of the name mangling string in the

generated identifiers. For example, if the specification RNS$M is used, the
name mangling string is appended (if required) to the end of the identifier.

The Minimum mangle length parameter specifies the minimum number
of characters used when a name mangling string is generated. The default

2-17

2 Code Generation Options and Optimizations

2-18

is 1 character. As described below, the actual length of the generated string
may be longer than this minimum.

Traceability

An important aspect of model based design is the ability to generate identifiers
that can easily be traced back to the corresponding entities within the model.
To ensure traceability, it is important to make sure that incremental revisions
to a model have minimal impact on the identifier names that appear in
generated code. There are two ways of achieving this:

1 Choose unique names for Simulink objects (blocks, signals, states, and
so on) as much as possible.

2 Make use of name mangling when conflicts cannot be avoided.

When conflicts cannot be avoided (as may be the case in models that use
libraries or model reference), name mangling ensures traceability. The
position of the name mangling string is specified by the placement of the $M
token in the Identifier format control parameter specification. Mangle
characters consist of lower case characters (a-z) and numerics (0-9), which
are chosen with a checksum that is unique to each object. How Name
Mangling Strings Are Computed on page 2-18 describes how this checksum is
computed for different types of objects.

How Name Mangling Strings Are Computed

Object Type Source of Mangling String

Block diagram Name of block diagram

Simulink block Full path name of block

Simulink Full name of parameter owner (that is, model or block)

parameter and parameter name

Simulink signal Signal name, full name of source block, and port
number

Stateflow objects | Complete path to Stateflow block and Stateflow
computed name (unique within chart)

Configuring a Model

The length of the name mangling string is specified by the Minimum mangle
length parameter. The default value is 1, but this automatically increases
during code generation as a function of the number of collisions.

To minimize disturbance to the generated code during development, specify
a larger Minimum mangle length. A Minimum mangle length of 4 is a
conservative and safe value. A value of 4 allows for over 1.5 million collisions
for a particular identifier before the mangle length is increased.

Minimizing Name Mangling

Note that the length of generated identifiers is limited by the Maximum
identifier length parameter. When a name collision exists, the $M token is
always expanded to the minimum number of characters required to avoid the
collision. Other tokens and character strings are expanded in the order listed
in Identifier Format Tokens on page 2-15. If the Maximum identifier length
is not large enough to accommodate full expansions of the other tokens,
partial expansions are used. To avoid this outcome, it is good practice to

¢ Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model.

® Where possible, increase the Maximum identifier length to accommodate
the length of the identifiers you expect to generate.

Set the Minimum mangle length parameter to reserve at least three
characters for the name mangling string. The length of the name mangling
string increases as the number of name collisions increases.

Note that an existing name mangling string increases (or decreases) in
length if changes to model create more (or fewer) collisions. If the length of
the name mangling string increases, additional characters are appended
to the existing string. For example, 'xyz' might change to 'xyzQ'. In the
inverse case (fewer collisions) 'xyz' would change to 'xy'.

Model Referencing Considerations

Within a model that uses model referencing, there can be no collisions
between the names of the constituent models. When generating code from a
model that uses model referencing:

2-19

2 Code Generation Options and Optimizations

2-20

®* The $R token must be included in the Identifier format control
parameter specifications (in addition to the $M token).

¢ The Maximum identifier length must be large enough to accommodate
full expansions of the $R and $M tokens. A code generation error occurs if
Maximum identifier length is not large enough.

When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,
the identifier from the referenced model is preserved. Name mangling is
performed on the identifier from the higher-level model.

Exceptions to Identifier Formatting Conventions

There are some exceptions to the identifier formatting conventions described
above:

¢ Type name generation: The above name mangling conventions do not
apply to type names (that is, typedef statements) generated for global
data types. If the $R token is included in the Identifier format control
parameter specification, the model name is included in the typedef. The
Maximum identifier length parameter is not respected when generating
type definitions.

® Non-Auto storage classes: The Identifier format control parameter
specification does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Identifier Format Control Parameters Limitations
The following limitations apply to the Identifier format control parameters:

® The following auto-generated identifiers currently do not fully comply
with the setting of the Maximum identifier length parameter on the
Real-Time Workshop/Symbols pane of the Configuration Parameters
dialog box.

= Model methods

» The applicable format string is RF, and the longest $F is
_derivatives, which is 12 characters long. The model name can

Configuring a Model

be up to 19 characters without exceeding the default Maximum
identifier length of 31.

= Local functions generated by S-functions or by add-on products, such as
the Signal Processing Blockset™ product, that rely on S-functions

= Local variables generated by S-functions or by add-on products, such as
the Signal Processing Blockset product, that rely on S-functions

= DWork identifiers generated by S-functions in referenced models
= Fixed-point shared utility macros or shared utility functions
= Simulink rtm macros

e Most are within the default Maximum identifier
length of 31, but some exceed the limit. Examples
are RTMSpecAccsGetStopRequestedValStoredAsPtr,
RTMSpecAccsGetErrorStatusPointer, and
RTMSpecAccsGetErrorStatusPointerPointer.

= Define protection guard macros

e Header file guards, such as RTW_HEADER_$(filename) h_, which
can exceed the default Maximum identifier length of 31 given a
filename such as $R_private.h.

e Include file guards, such as _$R_COMMON_INCLUDES .
e Typedef guards, such as CSCI_$R_CHARTSTRUCT .

In some situations, the following identifiers potentially can conflict with
others.

= Model methods

= Local functions generated by S-functions or by add-on products, such as
Signal Processing Blockset product, that rely on S-functions

= Local variables generated by S-functions or by add-on products, such as
Signal Processing Blockset product, that rely on S-functions

= Fixed-point shared utility macros or shared utility functions
= Include header guard macros

The following external identifiers that are unknown to the Simulink
software might conflict with auto-generated identifiers.

2-21

2 Code Generation Options and Optimizations

= Identifiers defined in custom code

= Identifiers defined in custom header files

= Identifiers introduced through a non-ANSI®? C standard library
= Identifiers defined by custom TLC code

¢ Identifiers generated for simulation targets may exceed the Maximum
identifier length. Simulation targets include the model reference
simulation target, the accelerated simulation target, the RSim target, and
the S-function target.

Configuring Model Interfaces
In addition to the interface parameters available for GRT targets, you can

configure the following for ERT targets:

® “Configuring Support for Numeric Data” on page 2-22

® “Configuring Support for Time Values” on page 2-23

¢ “Configuring Support for Non-Inlined S-Functions” on page 2-23

® “Configuring Model Function Generation and Argument Passing” on page
2-24

® “Configuring a Model for Code Reuse” on page 2-25

Configuring Support for Numeric Data

By default, ERT targets support code generation for integer, floating-point,
non-finite, and complex numbers.

To Generate Code that Do...
Supports...
Integer data only Deselect Support floating-point numbers. If any noninteger

data or expressions are encountered during code generation, an
error message reports the offending blocks and parameters.

Floating-point data Select Support floating-point numbers.

2. ANSI is a registered trademark of the American National Standards Institute, Inc.

2-22

Configuring a Model

To Generate Code that Do...

Supports...

Non-finite values (for example, | Select Support floating-point numbers and Support
NaN, Inf) non-finite numbers .

Complex data Select Support complex numbers .

For more information, see “Real-Time Workshop Pane: Interface” in the
Real-Time Workshop reference documentation.

Configuring Support for Time Values

Certain blocks require the value of absolute time (that is, the time from the
start of program execution to the present time) , elapsed time (for example,
the time elapsed between two trigger events), or continuous time. Depending
on the blocks used, you might need to adjust the configuration settings for
supported time values.

To... Select...

Generate code that creates | Support absolute time. For further information on the allocation

and maintains integer and operation of absolute and elapsed timers, see the “Timing

counters for blocks that use | Services” chapter of the Real-Time Workshop documentation. If

absolute or elapsed time you do not select this parameter and the model includes block that

values (default) use absolute or elapsed time values, the build process generates
an error.

Generate code for blocks Support continuous time. If you do not select this parameter

that rely on continuous time | and the model includes continuous-time blocks, the build process
generates an error.

For more information, see “Real-Time Workshop Pane: Interface” in the
Real-Time Workshop reference documentation.

Configuring Support for Non-Inlined S-Functions

To generate code for non-inlined S-functions in a model, select Support
non-inlined S-functions. The generation of non-inlined S-functions requires
floating-point and non-finite numbers. Thus, when you select Support

2-23

2 Code Generation Options and Optimizations

2-24

non-inlined S-functions, the ERT target automatically selects Support
floating-point numbers and Support non-finite numbers.

When you select Support non-finite numbers, the build process generates
an error if the model includes a C-MEX S-function that does not have a
corresponding TLC implementation (for inlining code generation).

Note that inlining S-functions is highly advantageous in production code
generation, for example in implementing device drivers. To enforce the use
of inlined S-functions for code generation, deselect Support non-inlined

S-functions.

For more information, see “Real-Time Workshop Pane: Interface” in the
Real-Time Workshop reference documentation.

Configuring Model Function Generation and Argument Passing

For ERT targets, you can configure how a model’s functions are generated and
how arguments are passed to the functions.

To...

Do...

Generate model function calls
that are compatible with the main
program module of the GRT target
(grt_main.c or .cpp)

Select GRT compatible call interface and MAT-file
logging . In addition, deselect Suppress error status
in real-time model data structure. GRT compatible
call interface provides a quick way to use ERT target
features with a GRT-based custom target by generating
wrapper function calls that interface to the ERT target’s
Embedded-C formatted code.

Reduce overhead and use more local
variables by combining the output
and update functions in a single
model step function

Select Single output/update function Errors or
unexpected behavior can occur if a Model block is part of
a cycle and “Single output/update function” is enabled
(the default). See “Model Blocks and Direct Feedthrough”
for details.

Generate a model terminate
function for a model not designed to
run indefinitely

Select Terminate function required. For more
information, see the description of model terminate.

Generate reusable, reentrant code
from a model or subsystem

Select Generate reusable code. See “Configuring a
Model for Code Reuse” on page 2-25 for details.

Configuring a Model

To...

Do...

Statically allocate model data
structures and access them directly
in the model code

Deselect Generate reusable code. The generated code
is not reusable or reentrant. See “Model Entry Points”
on page 1-24 for information on the calling interface
generated for model functions in this case.

Suppress the generation of an error
status field in the real-time model
data structure, rtModel, for example,
if you do not need to log or monitor
error messages

Select Suppress error status in real-time model
data structure. Selecting this parameter can also cause
the rtModel structure to be omitted completely from the
generated code.

When generating code for multiple integrated models, set
this parameter the same for all of the models. Otherwise,
the integrated application might exhibit unexpected
behavior. For example, if you select the option in one
model but not in another, the error status might not be
registered by the integrated application.

Do not select this parameter if you select the MAT-file
logging option. The two options are incompatible.

Launch the Model Interface dialog
box (see “Model Interface Dialog Box”
on page 2-89) preview and modify
the model’s model step function
prototype

Click Configure Step Function. Based on the
Function specification value you select for your
model step function (supported values include
Default model-step function and Model specific C
prototype), you can preview and modify the function
prototype. Once you validate and apply your changes,
you can generate code based on your function prototype
modifications. For more information about using the
Configure Step Function button and the Model
Interface dialog box, see “Controlling model_step
Function Prototypes” on page 2-88.

For more information, see “Real-Time Workshop Pane: Interface” in the
Real-Time Workshop reference documentation.

Configuring a Model for Code Reuse

For ERT targets, you can configure how a model reuses code using the
Generate reusable code parameter.

2-25

2 Code Generation Options and Optimizations

2-26

Pass root-level I/O as provides options that control how model inputs and
outputs at the root level of the model are passed to the model step function.

To... Select...
Pass each root-level model input and output Generate reusable code and Pass
argument to the model step function root-level I/O as > Individual arguments.

individually (the default)

Pack root-level input arguments and root-level Generate reusable code and Pass
output arguments into separate structures that | root-level I/O as > Structure reference

are then passed to the model step function

In some cases, selecting Generate reusable code can generate code that
compiles but is not reentrant. For example, if any signal, DWork structure, or
parameter data has a storage class other than Auto, global data structures are
generated. To handle such cases, use the Reusable code error diagnostic
parameter to choose the severity levels for diagnostics

In some cases, the Real-Time Workshop Embedded Coder software is unable
to generate valid and compilable code. For example, if the model contains any

of the following, the code generated would be invalid.

¢ An S-function that is not code-reuse compliant

® A subsystem triggered by a wide function call trigger
In these cases, the build terminates after reporting the problem.

For more information, see “Real-Time Workshop Pane: Interface” in the
Real-Time Workshop reference documentation.

Configuring a Model

Controlling Code Style

You can control the following style aspects in generated code:

® Level of parenthesization
® Whether operand order is preserved in expressions

® Whether conditions are preserved in if statements

For example, C code contains some syntactically required parentheses, and
can contain additional parentheses that change semantics by overriding
default operator precedence. C code can also contain optional parentheses
that have no functional significance, but serve only to increase the readability
of the code. Optional C parentheses vary between two stylistic extremes:

¢ Include the minimum parentheses required by C syntax and any
precedence overrides, so that C precedence rules specify all semantics
unless overridden by parentheses.

¢ Include the maximum parentheses that can exist without duplication, so
that C precedence rules become irrelevant: parentheses alone completely
specify all semantics.

Understanding code with minimum parentheses can require correctly
applying nonobvious precedence rules, but maximum parentheses can
hinder code reading by belaboring obvious precedence rules. Various
parenthesization standards exist that specify one or the other extreme, or
define an intermediate style that can be useful to human code readers.

You control the code style options by setting parameters on the Real-Time
Workshop > Code Style pane. For details on the parameters, see “Real-Time
Workshop Pane: Code Style” in the Real-Time Workshop Embedded Coder
reference documentation.

2-27

2 Code Generation Options and Optimizations

2-28

Configuring Templates for Customizing Code
Code and data templates provide a way to customize generated code.

To...

Enter or Select...

Specify a template that defines
the top-level organization and
formatting of generated source
code (.c or .cpp) files

Enter a code generation template (CGT) file for the Source
file (*.c) template parameter. .

Specify a template that defines
the top-level organization and
formatting of generated header
(.h) files

Enter a CGT file for the Header file (*.h) template
parameter. This can be the same template file that you
specify for Source file (.c) template, in which case
identical banners are generated in source and header files.
The default template is matlabroot
/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

Specify a template that organizes
generated code into sections (such
as includes, typedefs, functions,
and more)

Enter a custom file processing (CFP) template file for
the File customization template parameter. . A CFP
template can emit code, directives, or comments into each
section as required. See “Custom File Processing” on page
6-32 for detailed information.

Generate a model-specific
example main program module

Select Generate an example main program. See
“Generating the Main Program Module” on page 1-9 for
more information.

Template files that you specify must be located on the MATLAB® path.

For more detail, see the Module Packaging Features document. See also
“Generating Custom File Banners” on page 6-54 for a simple example of how
a code template can be applied to generate customized comment sections in
generated code files.

Configuring a Model

Configuring the Placement of Data in Code

TO...

Select or Enter...

Specify whether data is to be
defined in the generated source
file or in a single separate header
file

Select Auto, Data defined in source file, or Data defined
in single separate source file for the Data definition
parameter.

Specify whether data is to be
declared in the generated source
file or in a single separate header
file

Select Auto, Data defined in source file, or Data defined
in single separate source file for the Data declaration
parameter.

Specify the #include file
delimiter to be used in generated
files that contain the #include
preprocessor directive for mpt
data objects

Select Auto, Data defined in source file, or Data
defined in single separate source file for the #include
file delimiter parameter.

Name the generated module
using the same name as the
model or a user-specified name

Select Not specified, Same as model, or User specified
for the Module naming parameter.

Control whether signal data
objects are to be declared as
global data in the generated code

Enter an integer value for the Signal display level
parameter.

Declare a parameter data object
as tunable global data in the
generated code

Enter an integer value for the Parameter tune level
parameter.

For details data placement, see the Module Packaging Features document.

Configuring Replacement Data Types

You can replace built-in data type names with user-defined replacement data
type names in the generated code for a model.

To configure replacement data types,

2-29

Code Generation Options and Optimizations

2-30

1 Click Replace data type names in the generated code. A Data type
names table appears. The table lists each Simulink built-in data type
name with its corresponding Real-Time Workshop data type name.

¥, Configuration Parameters: untitled/Configuration (Active)
Select: [w Replace data type names in the generated code
- Salver —Data bype nam
- [1ata Import/E xport
DPt'm'Zat_'on Simulink. Feal Time wWorkshop Feplacement
E-Diagnostics) Mame Mame Mame
- Sample Time
- Dataalidily . double real T I
- Type Corveersion
- Connectivity single real3z_T I
- Compatibiity @ T [
- Model Referencing 5 5
-~ Hardware Irplenientation int1 int18_T I
- Model Referencing ints s T I
[=-Real-Tirme “Waorkshap Linta2 Lint2_T I
- Commenks
. Symbols uintlg uintl6T |
- Custom Code it uintBT |
~Debug boolean boolean_T I
- Interface
- Code Style int int_T |
- Templates Lint uint_T I

- D ata Placement
] char char T

- M emorny Section:

oK I LCancel | Help | Apply

b x

2 Selectively fill in fields in the third column with your replacement
data types. Each replacement data type should be the name of
a Simulink.AliasType object that exists in the base workspace.
Replacements may be specified or not for each individual built-in type.

For each replacement data type you enter, the BaseType property of the
associated Simulink.AliasType object must be consistent with the built-in
data type it replaces.

® For double, single, int32, int16, int8, uint32, uint16, uint8, and
boolean, the replacement data type’s BaseType must match the built-in
data type.

e For int, uint, and char, the replacement data type’s size must match
the size displayed for int or char on the Hardware Implementation
pane of the Configuration Parameters dialog box.

Configuring a Model

An error occurs if a replacement data type specification is inconsistent. For
more information, see “Replacing Built-In Data Type Names in Generated
Code” in the Module Packaging Features document.

Configuring Memory Sections
You can configure a model such that the generated code includes comments

and pragmas for

¢ Data defined in custom storage classes

¢ Internal data not defined in custom storage classes

¢ Model-level functions

® Atomic subsystem functions with or without separate data

TO...

Select...

Specify the package that contains memory
sections that you want to apply

The name of a package for Package. Click
Refresh package list to refresh the list of
available packages in your configuration.

Apply memory sections to initialize/start and
terminate functions

A value for Initialize/Terminate.

Apply memory sections to step, run-time
initialization, derivative, enable, and disable
functions

A value for Execution.

Apply memory sections to constant parameters,
constant, block I/O, or zero representation

A value for Constants.

Apply memory sections to root inputs or
outputs

A value for Inputs/Outputs.

Apply memory sections to block I/0, Dwork
vectors, run-time models, zero-crossings

A value for Internal data.

Apply memory sections to parameters

A value for Parameters.

The interface checks whether the specified package is on the MATLAB path
and that the selected memory sections are in the package. The results of this
validation appear in the field Validation results.

2-31

2 Code Generation Options and Optimizations

2-32

For details on using memory sections, see Chapter 5, “Memory Sections”.

Configuring Optimizations

To...

Select or Specify...

Control whether parameter data for
reusable subsystems is generated in a
separate header file for each subsystem
or in a single parameter data structure

Select Hierarchical or NonHierarchical for
Parameter structure.

Generate initialization code for
root-level inports and outports with a
value of zero

Select Remove root level I/O zero initialization.

Generate additional code to set float and
double storage explicitly to value 0.0

Select Use memset to initialize floats and doubles
to 0.0 When you set this parameter, the memset
function clears internal storage (regardless of type)
to the integer bit pattern 0 (that is, all bits are off).
The additional code generated when the option is

off, is slightly less efficient.If the representation of
floating-point zero used by your compiler and target
CPU is identical to the integer bit pattern 0, you can
gain efficiency by setting this parameter.

Suppress the generation of code that
initializes internal work structures (for
example, block states and block outputs)
to zero

Select Remove internal state zero initialization.

Generate run-time initialization code
for a block that has states only if the
block is in a system that can reset its
states, such as an enabled subsystem

Select Optimize initialization code for model
reference This results in more efficient code, but
requires that you not refer to the model from a Model
block that resides in a system that resets its states.
Such nesting results in an error. Turn this option
off only if your application requires you refer to the
model from Model blocks in systems that can reset
their states.

Configuring a Model

To...

Select or Specify...

Remove code that ensures that execution
of the generated code produces the same
results as simulation when out-of-range
conversions occur

Select Remove code from floating-point to
integer conversions that wraps out-of-range
values. This reduces the size and increases the
speed of the generated code at the cost of potentially
producing results that do not match simulation in the
case of out-of-range values.

Suppress generation of code that guards
against fixed-point division by zero

Select Remove code that protects against
division arithmetic exceptions. When you select
this parameter, simulation results and results
from generated code may no longer be in bit-for-bit
agreement.

To minimize the amount of memory
allocated for absolute and elapsed time
counters

Specify an integer value for Application lifespan
(days) For more information on the allocation and
operation of absolute and elapsed timers, see “Timing
Services”, “Using Timers in Asynchronous Tasks”, and
“Controlling Memory Allocation for Time Counters” in
the Real-Time Workshop documentation.

2-33

2 Code Generation Options and Optimizations

2-34

Tips for Optimizing the Generated Code

In this section...

“Introduction” on page 2-34

“Using Auto-Optimized Targets” on page 2-34

“Using Configuration Wizard Blocks” on page 2-35

“Setting Hardware Implementation Parameters Correctly” on page 2-35
“Removing Unnecessary Initialization Code” on page 2-37

“Generating Pure Integer Code If Possible” on page 2-38

“Disabling MAT-File Logging” on page 2-38

“Using Virtualized Output Ports Optimization” on page 2-39

“Using Stack Space Allocation Options” on page 2-40

“Using External Mode with the ERT Target” on page 2-42

Introduction

The Real-Time Workshop® Embedded Coder™ software features a number
of code generation options that can help you further optimize the generated
code. This section highlights code generation options you can use to improve
performance and reduce code size.

Most of the tips in this section apply specifically to the ERT target. See

also the “Optimizing a Model for Code Generation” section of the Real-Time
Workshop® documentation for optimization techniques that are common to all
target configurations.

Using Auto-Optimized Targets

To make it easier for you to generate the most efficient code for your target
CPU, the Real-Time Workshop Embedded Coder software provides two
auto-optimized ERT target variants. These target variants are optimized,
respectively, for fixed-point and floating-point code generation.

Tips for Optimizing the Generated Code

Before generating and deploying code, consider using one of these optimized
target variants. The optimized ERT target variants are discussed in detail in
“Generating Efficient Code with Optimized ERT Targets” on page 6-24.

Using Configuration Wizard Blocks

The Real-Time Workshop Embedded Coder software provides a library of
Configuration Wizard blocks and scripts to help you configure and optimize
code generation from your models quickly and easily.

When you add one of the preset Configuration Wizard blocks to your model
and double-click it, an M-file script executes and configures all parameters
of the model’s active configuration set without user intervention. The preset
blocks configure the options optimally for common fixed- and floating-point
code generation scenarios.

You can also create custom Configuration Wizard scripts and blocks.

See “Optimizing Your Model with Configuration Wizard Blocks and Scripts”
on page 6-60 for detailed information.

Setting Hardware Implementation Parameters
Correctly

Correct specification of target-specific characteristics of generated code
(such as word sizes for char, short, int, and long data types, or desired
rounding behaviors in integer operations) can be critical in embedded
systems development. The Hardware Implementation category of options
in a configuration set provides a simple and flexible way to control such
characteristics in both simulation and code generation.

Before generating and deploying code, you should become familiar with the
options on the Hardware Implementation pane of the Configuration
Parameters dialog box. See “Hardware Implementation Pane” in the
Simulink® documentation and “Configuring Hardware Properties” in the
Real-Time Workshop documentation for full details on the Hardware
Implementation pane.

By configuring the Hardware Implementation properties of your model’s
active configuration set to match the behaviors of your compiler and hardware,

2-35

2 Code Generation Options and Optimizations

2-36

you can generate more efficient code. For example, if you specify the Byte
ordering property, you can avoid generation of extra code that tests the byte
ordering of the target CPU.

You can use the rtwdemo_targetsettings demo model to determine some
implementation-dependent characteristics of your C or C++ compiler, as well
as characteristics of your target hardware. By using this model in conjunction
with your target development system and debugger, you can observe the
behavior of the code as it executes on the target. You can then use this
information to configure the Hardware Implementation parameters of
your model.

To use this model, type the command

rtwdemo_targetsettings

Follow the instructions in the model window.

Tips for Optimizing the Generated Code

Removing Unnecessary Initialization Code

Consider selecting the Remove internal state zero initialization and
Remove root level I/O zero initialization options on the Optimization
pane.

These options (both off by default) control whether internal data (block states
and block outputs) and external data (root inports and outports whose value
is zero) are initialized. Initializing the internal and external data whose value
is zero is a precaution and may not be necessary for your application. Many
embedded application environments initialize all RAM to zero at startup,
making generation of initialization code redundant.

However, be aware that if you select Remove internal state zero
initialization, it is not guaranteed that memory is in a known state each
time the generated code begins execution. If you turn the option on, running
a model (or a generated S-function) multiple times can result in different
answers for each run.

This behavior is sometimes desirable. For example, you can turn on Remove
internal state zero initialization if you want to test the behavior of

your design during a warm boot (that is, a restart without full system
reinitialization).

In cases where you have turned on Remove internal state zero
initialization but still want to get the same answer on every run from a
S-function generated by the Real-Time Workshop Embedded Coder software,
you can use either of the following MATLAB® commands before each run:

clear SFcnName

where SFcnName is the name of the S-function, or

clear mex

A related option, Use memset to initialize floats and doubles, lets
you control the representation of zero used during initialization. See “Use
memset to initialize floats and doubles to 0.0” in the Simulink reference
documentation.

2-37

2 Code Generation Options and Optimizations

2-38

Note that the code still initializes data structures whose value is not zero
when Remove internal state zero initialization and Remove root level
I/0 zero initialization are selected.

Note also that data of ImportedExtern or ImportedExternPointer storage
classes is never initialized, regardless of the settings of these options.

Generating Pure Integer Code If Possible

If your application uses only integer arithmetic, deselect the Support
floating-point numbers option in the Software environment section of
the Interface pane to ensure that generated code contains no floating-point
data or operations. When this option is deselected, an error is raised if any
noninteger data or expressions are encountered during code generation. The
error message reports the offending blocks and parameters.

Disabling MAT-File Logging

Clear the MAT-file logging option in the Verification section of the
Interface pane. This setting is the default, and is recommended for
embedded applications because it eliminates the extra code and memory
usage required to initialize, update, and clean up logging variables. In
addition to these efficiencies, clearing the MAT-file logging option lets you
exploit further efficiencies under certain conditions. See “Using Virtualized
Output Ports Optimization” on page 2-39 for information.

Note also that code generated to support MAT-file logging invokes malloc,
which may be undesirable for your application.

Tips for Optimizing the Generated Code

Using Virtualized Output Ports Optimization

The virtualized output ports optimization lets you store the signal entering
the root output port as a global variable. This eliminates code and data
storage associated with root output ports when the MAT-file logging option
is cleared and the TLC variable FullRootOutputVector equals 0, both of
which are defaults for Real-Time Workshop Embedded Coder targets.

To illustrate this feature, consider the model shown in the following block
diagram. Assume that the signal exportedSig has exportedGlobal storage
class.

1
J_|_|_|_ b exported Sig -

Cut1

FulseGen ain

In the default case, the output of the Gain block is written to the signal

storage location, exportedSig. No code or data is generated for the Out1
block, which has become, in effect, a virtual block. This is shown in the

following code fragment.

/* Gain Block: <Root>/Gain */
exportedSig = rtb_PulseGen * VirtOutPortLogOFF_P.Gain_Gain;

In cases where either the MAT-file logging option is enabled, or
FullRootOutputVector = 1, the generated code represents root output ports
as members of an external outputs vector.

The following code fragment was generated from the same model shown in
the previous example, but with MAT-file logging enabled. The output port is
represented as a member of the external outputs vector VirtOutPortLogON_Y.
The Gain block output value is copied to both exportedSig and to the
external outputs vector.

/* Gain Block: <Root>/Gain */
exportedSig = rtb_PulseGen * VirtOutPortLogON_P.Gain_Gain;

/* Outport Block: <Root>/Outi */
VirtOutPortLogON_Y.Out1 = exportedSig;

2-39

2 Code Generation Options and Optimizations

2-40

The overhead incurred by maintenance of data in the external outputs vector
can be significant for smaller models being used to perform benchmarks.

Note that you can force root output ports to be stored in the external outputs
vector (regardless of the setting of MAT-file logging) by setting the TLC
variable FullRootOutputVector to 1. You can do this by adding the statement

%assign FullRootOutputVector = 1

to the Real-Time Workshop Embedded Coder system target file. Alternatively,
you can enter the assignment with TLC options on the Real-Time
Workshop pane of the Configuration Parameters dialog box.

For more information on how to control signal storage in generated code,
see the “Working with Data Structures” section of the Real-Time Workshop
documentation.

Using Stack Space Allocation Options

The Real-Time Workshop software offers a number of options that let you
control how signals in your model are stored and represented in the generated
code. This section discusses options that

® Let you control whether signal storage is declared in global memory space,
or locally in functions (that is, in stack variables).
¢ Control the allocation of stack space when using local storage.

For a complete discussion of signal storage options, see the “Working with
Data Structures” section of the Real-Time Workshop documentation.

If you want to store signals in stack space, you must turn the Enable local
block outputs option on. To do this

1 Select the Optimization tab of the Configuration Parameters dialog box.
Make sure that the Signal storage reuse option is selected. If Signal
storage reuse is off, the Enable local block outputs option is not
available.

2 Select the Enable local block outputs option. Click Apply if necessary.

Tips for Optimizing the Generated Code

Your embedded application may be constrained by limited stack space. When
the Enable local block outputs option is on, you can limit the use of stack
space by using the following TLC variables:

® MaxStackSize: The total allocation size of local variables that are declared
by all block outputs in this model cannot exceed MaxStackSize (in bytes).
MaxStackSize can be any positive integer. If the total size of local block
output variables exceeds this maximum, the remaining block output
variables are allocated in global, rather than local, memory. The default
value for MaxStackSize is rtInf, that is, unlimited stack size.

Note Local variables in the generated code from sources other than local
block outputs and stack usage from sources such as function calls and
context switching are not included in the MaxStackSize calculation. For
overall executable stack usage metrics, you should do a target-specific
measurement, such as using runtime (empirical) analysis or static (code
path) analysis with object code.

® MaxStackVariableSize: Limits the size of any local block output variable
declared in the code to N bytes, where N>0. A variable whose size exceeds
MaxStackVariableSize is allocated in global, rather than local, memory.
The default is 4096.

To set either of these variables, use assign statements in the system target
file (ert.tlc), as in the following example.

%assign MaxStackSize = 4096

You should write your %assign statements in the Configure RTW code
generation settings section of the system target file. The %assign
statement is described in the Target Language Compiler document.

2-41

2 Code Generation Options and Optimizations

2-42

Using External Mode with the ERT Target

Selecting the External mode option turns on generation of code to support
external mode communication between host (the Simulink model) and target
systems. Real-Time Workshop Embedded Coder software supports all features
of Simulink external mode, as described in the “External Mode” section of the
Real-Time Workshop documentation.

This section discusses external mode options that may be of special interest
to embedded systems designers. The next figure shows the Data Exchange
subpane of the Configuration Parameters dialog box, Interface pane, with
External mode selected.

—Data exchang

Interface: I External mode LI

—Host/T arget interfac

Tranzport layer: I topip ﬂ ME-file name: ext_comm

MEx-file arguments: I

—Memory management

[Static memary allocation

Memory Management

Consider the Memory management option Static memory allocation
before generating external mode code for an embedded target. Static memory
allocation is generally desirable, as it reduces overhead and promotes
deterministic performance.

When you select the Static memory allocation option, static external mode
communication buffers are allocated in the target application. When Static
memory allocation is deselected, communication buffers are allocated
dynamically (with malloc) at run time.

Tips for Optimizing the Generated Code

Generation of Pure Integer Code with External Mode

Real-Time Workshop Embedded Coder software supports generation of pure
integer code when external mode code is generated. To do this, select the
External mode option, and deselect the Support floating-point numbers
option in the Software environment section of the Interface pane.

This enhancement lets you generate external mode code that is free of any
storage definitions of double or float data type, and allows your code to run on
integer-only processors

If you intend to generate pure integer code with External mode on, note
the following requirements:

o All trigger signals must be of data type int32. Use a Data Type Conversion
block if needed.

¢ When pure integer code is generated, the simulation stop time specified
in the Solver options is ignored. To specify a stop time, run your target
application from the MATLAB command line and use the -tf option. (See
“Running the External Program” in the “External Mode” section of the
Real-Time Workshop documentation.) If you do not specify this option, the
application executes indefinitely (as if the stop time were inf).

When executing pure integer target applications, the stop time specified
by the -tf command line option is interpreted as the number of base rate
ticks to execute, rather than as an elapsed time in seconds. The number of
ticks is computed as

stop time in seconds / base rate step size in seconds

2-43

2 Code Generation Options and Optimizations

2-44

Creating and Using a Code Generation Report

In this section...

“Overview” on page 2-44

“Generating an HTML Code Generation Report” on page 2-45
“Using Code-to-Model Traceability” on page 2-47

“Using Model-to-Code Traceability” on page 2-49

“Using the Model-to-Code Navigation Dialog Box to Load Existing Trace
Information” on page 2-51

“Viewing the Traceability Report” on page 2-52
“Traceability Limitations” on page 2-53

Overview

The Real-Time Workshop® Embedded Coder™ code generation report is an
enhanced version of the HTML code generation report normally generated
by the Real-Time Workshop® build process. The report consists of several
sections:

¢ The Generated Source Files section of the Contents pane contains a table of

source code files generated from your model. You can view the source code
in a MATLAB® Web browser window.

If you selected the traceability option Code-to-model, hyperlinks within
the displayed source code let you view the blocks or subsystems from which
the code was generated. Click on the hyperlinks to view the relevant blocks
or subsystems in a Simulink® model window.

If you selected the traceability option Model-to-code, traceability support
lets you view the generated code for any block in the model. To highlight a
block’s generated code in the HTML report, right-click the block and select
Real-Time Workshop > Navigate to Code.

The Summary section lists version and date information, TLC options
used in code generation, and Simulink model settings. The Configuration
Settings at the Time of Code Generation link opens a noneditable view of

Creating and Using a Code Generation Report

the Configuration Parameters dialog that shows all of the settings at the
time of code generation.

® The Traceability Report section lists eliminated and virtual blocks versus
Simulink blocks, Stateflow® objects, and Embedded MATLAB™ scripts,
helping to provide a complete mapping between your model and your
generated code.

® The Subsystem Report section contains information on nonvirtual
subsystems in the model.

Generating an HTML Code Generation Report

To generate a code generation report,

1 Open the Configuration Parameters dialog box or Model Explorer and
navigate to the Real-Time Workshop > Report pane.

2 Select Create code generation report. By default, Launch report
automatically and Code-to-model also are selected, and Model-to-code
is cleared, as shown in the figure below.

You can select or clear any of these options as desired.

2-45

2 Code Generation Options and Optimizations

Real-Time Workshop

General Report | Comments I Symbals I Custom Code Debug Interface I Co 1|>

¥ Create code generation report V¥ Launch report automatically
—Mavigation

¥ Code-to-maodsl

[~ Model-to-code Configure. .. |

— Traceability Report Contents

™ Eliminated [virtual blocks

[~ Traceable Simulink blocks

[Traceable Stateflow objects

[~ Traceable Embedded MATLAE functions

[V Generate code only Generate code |

J Revert | Help | Apply |

3 Generate code from your model or subsystem (for example, for a model, by
clicking Build on the Real-Time Workshop pane of the Configuration
Parameters dialog box).

4 The Real-Time Workshop build process writes the code generation
report files in the html subdirectory of the build directory. The
top-level HTML report file is named model codegen_rpt.html or
subsystem_codegen_rpt.html.

5 If you selected Launch report automatically, the Real-Time Workshop
build process automatically opens a MATLAB Web browser window and
displays the code generation report.

2-46

Creating and Using a Code Generation Report

If you did not select Launch report automatically, you can

open the code generation report (model codegen rpt.html or
subsystem_codegen_rpt.html) manually into a MATLAB Web browser
window, or into another Web browser.

6 If you selected Code-to-model, hyperlinks to blocks in the generating
model are created in the report files. When you view the report files
in a MATLAB Web browser, clicking on these hyperlinks displays and
highlights the referenced blocks in the model. For more information, see
“Using Code-to-Model Traceability” on page 2-47.

7 If you selected Model-to-code, model-to-code highlighting support is
included in the generated HTML report. To highlight the generated
code for a block in your Simulink model, right-click the block and select
Real-Time Workshop > Navigate to Code. This selection highlights
the generated code for the block in the HTML code generation report. For
more information, see “Using Model-to-Code Traceability” on page 2-49 and
“Viewing the Traceability Report” on page 2-52.

Notes

¢ For large models (containing over 1000 blocks), you may find that HTML
report generation takes longer than you want. In this case, consider
clearing the Code-to-model and Model-to-code check boxes. The report
will be generated faster.

® You can also view the HTML report files, as well as the generated code files,
in the Simulink Model Explorer. See “Viewing Generated Code in Model
Explorer” in the Real-Time Workshop documentation for details.

Using Code-to-Model Traceability

To use Code-to-model,

1 Open an ERT-based model and go to the Real-Time Workshop—Report
pane of the Configuration Parameters dialog box. Select the option Create
Code Generation report. By default, Launch report automatically
and Code-to-model also are selected.

2-47

2 Code Generation Options and Optimizations

¥ Create code generation report

¥ Launch report automatically

MNavigation

¥ Code-to-model

[Model-tocode Configure. .. |

2 Build your model. This will launch an HTML code generation report.

3 In the HTML report window, click any of the hyperlinks present to highlight
the source block. For example, in the HTML report shown below for the
demo model rtwdemo_hyperlinks, you could click the first UnitDelay
hyperlink in the generated code for the model step function.

=
2 /* Model step function */ ;I
BE_CkI Forvard void rtwdemo_hyperlinks_step (void)
i
Contents {
Summary Bints T rtb_Sum idx;
Subsystem Report uint8 T rth Sum idx 0;
Generated Source Files boolean T r;b_REIOpE_idx:
ert main.c boolean T rth RelOpt idx O;
rt_nonfinite.c B -
rtwdemao hyperlinks.c = crporates:
rt_nonfinite.h * '
rtwdemo hyperlinks.h =
rtwdemo hvperlinks priv *
rtwdema hyperinks type */
rtwtypes.h rtb_Sum idx = (uintf_T) (2U + (uint32_T)rtDWork.X[0]):
rtb_Sum idx 0 = (uint8_T) (30 + (uint32 T)rcDWork.X[1]):
3 Operator: '<Root>/RelOpt’' incorporates:
* '<Root> !
.
roi RelOpt_idx = (rch_Sum idx != 187):
rtb_RelOpt_idx 0 = (rtb_Sum idx 0 != 18U);
/* Outport: '<Root> oS
reY.0ut[0] = rtb RelCOpt idx: =
rt¥.0ut[1l] = rtb_RelCpt_idx_ 0;
' incorporates:
if (rth_RelOpt_idx) {
rtiWork.X[0] = rtb_Sum idx:
} else {
rtDWork.X[0] = 0OU;
¥ -
! || KT | _»IJ

oK I LCancel | Help | Aply |

4 Making this selection highlights the corresponding source block in the
Simulink model window.

2-48

Creating and Using a Code Generation Report

LINIT
) RelOpt| ~= it [
1 N _ 12 Scope
= aadias Le(T)
- f—] 0 | Out
X

Switch RESET

See also the demo rtwdemo_hyperlinks, which walks you through using

Code-to-model .

Using Model-to-Code Traceability

To use Model-to-code,

1 Open an ERT-based model and go to the Real-Time Workshop > Report
pane of the Configuration Parameters dialog box. Select the options
Create Code Generation report, Launch report automatically, and
Model-to-code. (Selecting Model-to-code also enables the Configure
button, which you can use to open the Model-to-code dialog box; see
“Using the Model-to-Code Navigation Dialog Box to Load Existing Trace
Information” on page 2-51.)

¥ Create code generation report
—Mavigation

W Launch report automatically

v C

Configure... |

— Traceability Report Contents

W Eliminated | virtual blocks
¥ Traceable Simulink blocks
W Traceable Stateflow objects

¥ Traceable Embedded MATLAB functions

2 Build your model. This launches an HTML code generation report.

3 In the model window, right-click any block. In the right-click menu, select
Real-Time Workshop > Navigate to Code.

2-49

2 Code Generation Options and Optimizations

4 This selection highlights the generated code for the block in the HTML code
generation report. The total number of highlighted lines is displayed next
to each source file name in the left panel of the HTML report. Previous
and Next buttons help you navigate through the highlighted lines.

E! Real-Time Workshop Report

~=lalx|

Back I Forvard

Contents
Summary
Traceability Report
Subsystem Report

Highlight Navigation
Previous | Next

Generated Source Files

ert main.c

rt_nonfinite.c

rtwdemo hyperlinks.c (2)
rt_nonfinite.h

rtwdemo hyperlinks.h (1)
rtwdemo hyperlinks private.h
rtwdemo hvperlinks tvpes.h
rtwtypes.h

4

uint8 T rtb Sum idx;

uint8 T rtb_Sum idx_0;
boolean T rtb RelOpt_idx:
boolean T rth RelOpt_idx 0;

rtb_Sum idx = (uincd T) (2U + (uinc32 T)rtDWork.X([0]):
rth_Sum idx O = (wintd T) (30 + (wint32 T)rtDWork.X[11);

e10pt

Operator: '<Root>/RelOpt

'<Root>,

incorporates:

rth_RelCpt_idx = (rth_Sum idx !'= 187):
rtb_RelCpt_idx 0 = (rtb_Sum idx 0 != 180);

/* Outport: '<Root>/Out' */
rt¥.Out = rtb_RelOpt_idx;
rtY¥.0ut[1l] = rtb RelOpt_idx 0;

! '<Root>/X' incorporates:

. -
| _>l_I

ok | tory |

Cancel | Help |

See also the demo rtwdemo_hyperlinks, which walks you through using

Model-to-code.

2-50

Creating and Using a Code Generation Report

Note Ifyou later close and reopen your model, you may find that you cannot
use right-click/Real-Time Workshop > Navigate to Code to trace a block’s
code, because Navigate to Code is greyed out. This means that a build
directory for your model cannot be found in the current working directory. To
address this you can do any of the following:

® Reset the current working directory to the parent directory of the existing
build directory.

¢ Select Model-to-code and rebuild the model. This regenerates the build
directory into the current working directory.

® (Click the Configure button and reload the model’s trace information using
the Model-to-code navigation dialog box. See “Using the Model-to-Code
Navigation Dialog Box to Load Existing Trace Information” on page 2-51.

Using the Model-to-Code Navigation Dialog Box to
Load Existing Trace Information

To open the Model-to-code navigation dialog box, click the Configure
button on the Real-Time Workshop > Report pane of the Configuration
Parameters dialog box. You can use this dialog box to reconnect your model
with a previously-generated build directory, including trace information for
model-to-code highlighting.

E! Muodel-to-code navigation

—Description

Retrieve generated code From existing build directory. This step is necessary only
when the build directory is not located in the current working directory and the model
was closed and reopened after code generation.

Mote: The setting is lost when you rebuild or close the madel.

—Retrieve generated code

Build directory:“ Browse ... |
oK I Cancel | Help | Apply |

If you find that you cannot use right-click Real-Time Workshop > Navigate
to Code to trace a block’s code, because Navigate to Code is greyed out, it

2-51

2 Code Generation Options and Optimizations

2-52

means that a build directory for your model cannot be found in the current
working directory. To fix this without having to reset the current working
directory or rebuild the model,

1 Click the Configure button to launch the Model-to-code navigation dialog
box.

2 In the dialog box, click the Browse button, browse to the build directory
for your model, and select the directory. The build directory path should be
displayed in the Build directory field of the dialog box, as shown in the
example above.

3 Click Apply or OK. This loads trace information from the earlier build
into your Simulink session, provided that you selected Model-to-code
for the build.

4 Now you can now successfully use right-click Real-Time
Workshop > Navigate to Code to trace a block’s code.

Viewing the Traceability Report

When you select the Model-to-code parameter discussed in the previous
section, the generated HTML report contains a traceability report. The
traceability report contains sections that allow you to account for Eliminated
/ Virtual Blocks versus Traceable Simulink Blocks, providing a complete
mapping between blocks and code.

Creating and Using a Code Generation Report

=] Real-Time Workshop Report i] 3]
== _==<l | Traceability Report
Contents
Summary Eliminated / Virtual Blocks
Traceability Report
Subsystem Repart Block Name Comment
Highlight Navigation <RGGE},{;B:'J.‘.'G ERT Empty SubSystem
Brevious | Nesct | <RGGL35..¢.-L-X Mg.:{_
<Root=/Scope Eliminated unused block
Generated Source Files =Root=/View RTW Empty SubSystem
ert main.c
rt_nonfinite.c Traceable Blocks
rtwdemo hvperlinks.c (2)
It nonfinite.n Block Name Code Location
rtwdemo hyperlinks.h (1) <Root=/INC2 rtwdemo hyperlinks.c:26
rtwdemo hyperlinks private.h | cpoor=/mnca rtwdemo hyperlinks.c:37
rtwdemo _hyperlinks tvpes.h <Root=/LIMIT rtwdemo hyperlinks.c:44
rtwtypes.h <Root=/RESET rtwdemo _hyperlinks.c:54
<Root =/Rel0pt rtwdemo _hyperlinks.c:43
<Root=/Sum rtwdemo _hyperlinks.c:35
<Root=/Switch rtwdemo _hyperlinks.c:55
rtwdemo hyperlinks.c:28
<Root=/X rtwdemo _hvperlinks.c:53
rtwdemo _hyperlinks.h:36
P rtwdemo hyperlinks.c:49
<Ro0T> Out rtwdemo hyperlinks.h:41
ak. I Cancel | Help | Apply |

See the demo rtwdemo_hyperlinks, which walks you through using the
traceability report.

Traceability Limitations

The following limitations apply to the traceability features of HTML code
generation reports.

¢ If a block name in your model contains a single quote ('), code-to-model and
model-to-code are disabled for that block.

¢ If an asterisk (*) in a block name in your model causes a name-mangling
ambiguity relative to other names in the model, code-to-model highlighting
and model-to-code highlighting are disabled for that block. This is most

2-53

2 Code Generation Options and Optimizations

2-54

likely to occur if an asterisk precedes or follows a slash (/) in a block name
or appears at the end of a block name.

If a block name in your model contains the character (char(255)),
code-to-model highlighting and model-to-code highlighting are disabled
for that block.

Some types of subsystems are not traceable using Model-to-code at the
subsystem block level:

= Virtual subsystems
= Masked subsystems
= Nonvirtual subsystems for which code has been optimized away

If you cannot trace a subsystem at subsystem level, you may be able to
trace individual blocks within the subsystem.

Automatic S-Function Wrapper Generation

Automatic S-Function Wrapper Generation

In this section...

“Overview” on page 2-55

“Generating an ERT S-Function Wrapper” on page 2-56

“S-Function Wrapper Generation Limitations” on page 2-58

Overview

An S-function wrapper is an S-function that calls your C or C++ code from
within a Simulink® model. S-function wrappers provide a standard interface
between a Simulink model and externally written code, allowing you to
integrate your code into a model with minimal modification. This is useful for
software-in-the-loop (SIL) code verification (validating your generated code
using Simulink software), as well as for simulation acceleration purposes.
For a complete description of wrapper S-functions, see the Simulink Writing
S-Functions document.

Using the Real-Time Workshop® Embedded Coder™ Create Simulink
(S-Function) block option, you can build, in one automated step:

® A non-inlined C or C++ MEX S-function wrapper that calls Real-Time
Workshop Embedded Coder generated code

® A model containing the generated S-function block, ready for use with
other blocks or models

When the Create Simulink (S-Function) block option is on, the Real-Time
Workshop® build process generates an additional source code file, model_sf.c
or .cpp, in the build directory. This module contains the S-function that calls
the Real-Time Workshop Embedded Coder code that you deploy. You can use
this S-function in a Simulink model.

The build process then compiles and links model sf.c or .cpp with model.c
or .cpp and the other Embedded Coder generated code modules, building
a MEX-file. The MEX-file is named model sf.mexext. (mexext is the file
extension for MEX-files on your platform, as given by the MATLAB® mexext
command.) The MEX-file is stored in your working directory. Finally, the

2-55

2 Code Generation Options and Optimizations

2-56

Real-Time Workshop build process creates and opens an untitled model
containing the generated S-Function block.

Note To generate a wrapper S-function for a subsystem, you can use a
right-click subsystem build. Right-click the subsystem block in your model,
select Real-Time Workshop > Generate S-Function, and in the Generate
S-Function dialog box, select Use Embedded Coder and click Build.

Generating an ERT S-Function Wrapper

To generate an S-function wrapper for your Real-Time Workshop Embedded
Coder code, open your ERT-based Simulink model and do the following:

1 Open the Configuration Parameters dialog box.
2 Select the Interface pane.

3 Select the Create Simulink (S-Function) block option, as shown in
this figure.

Automatic S-Function Wrapper Generation

Real-Time Workshop
General | Comments I Symbols I Custorn Code | Debug Interface | Code Style | <|>

— Software envirohment

Target function library: [C83/C40 [4NS1) |
Ultility function generation: IAuto LI
Support: ¥ floating-paint numbers IV norfinite numbers IV complex numbers

¥ absolute time [T continuous time [T marvinlined S-unctions

— Code interface
[GRT compatible call interface W Single output/update function W Terminate function required

[T Generate reusable cods

[~ Suppress enar status in reaktime model data structure

Configure Functions ...

— Werification

Support software-in-the-loop [SIL] testing
’7|7 Create Simulink [S-Function] block ™ Enable portable word sizes

[~ MAT-file logging

— Data exchange

Interface: INone LI

[™ Generate code only Build |

4 Configure the other code generation options as required.

5 To ensure that memory for the S-Function is initialized to zero, you should
deselect the following options in the Data Initialization subpane of the

Optimization pane:
¢ “Remove root level I/O zero initialization”
¢ “Remove internal state zero initialization”

e “Use memset to initialize floats and doubles to 0.0”
6 Select the Real-Time Workshop pane and click the Build button.

7 When the build process completes, an untitled model window opens. This
model contains the generated S-Function block.

2-57

2 Code Generation Options and Optimizations

2-58

o

File Edit WYiew Simulation Format Tools Help

DSES| =Bz of

RTW S-Function

Fl1o0% |Fixedstept -

8 Save the new model.

9 The generated S-Function block is now ready to use with other Simulink

blocks or models.

S-Function Wrapper Generation Limitations

The following limitations apply to Real-Time Workshop Embedded Coder
S-function wrapper generation:

Continuous sample time is not supported. The Support continuous time
option should not be selected when generating a Real-Time Workshop
Embedded Coder S-function wrapper.

Models that contain S-function blocks for which the S-function is not
inlined with a TLC file are not supported when generating a Real-Time
Workshop Embedded Coder S-function wrapper.

You cannot use multiple instances of a generated Real-Time Workshop
Embedded Coder S-function block within a model, because the code uses
static memory allocation. Each instance potentially can overwrite global
data values of the others.

Real-Time Workshop Embedded Coder S-function wrappers can be used
with other blocks and models for such purposes as SIL code verification and
simulation acceleration, but cannot be used for code generation.

A MEX S-function wrapper must only be used in the MATLAB version in
which the wrapper is created.

Verifying Generated Code with Software-in-the-loop Testing

Verifying Generated Code with Software-in-the-loop

Testing

In this section...

“Overview” on page 2-59

“Validating Generated Code on the MATLAB® Host Computer Using
Hardware Emulation” on page 2-60

“Validating ERT Production Code on the MATLAB® Host Computer Using
Portable Word Sizes” on page 2-61

Overview

Real-Time Workshop® Embedded Coder™ software provides
software-in-the-loop (SIL) code verification for subsystems using ERT
S-function wrappers, described in “Automatic S-Function Wrapper
Generation” on page 2-55. When processor word sizes differ between host and
target platforms (for example, a 32-bit host and a 16-bit target), there are
two ways to configure your Simulink® model to simulate target behavior on
the MATLAB® host with SIL:

¢ Enable and select Emulation hardware settings on the Hardware
Implementation pane of the Configuration Parameters dialog

¢ Select the Enable portable word sizes option on the Interface pane of
the Configuration Parameters dialog

Select the hardware emulation method if you need the MATLAB host
computer to simulate the bit-true behavior of the generated code on the target
deployment system. In this case, the code that you generate for simulation on
the MATLAB host might contain additional code, such as data type casts, that
is necessary to ensure behavior consistent with the target environment. (See
also “Configuring Optimizations” in the Real-Time Workshop® documentation
for settings in the Code generation subpane of the Optimization pane
that affect the generated code.) After SIL testing on the MATLAB host, you
must select None for Emulation hardware and then regenerate code for
the target before deployment.

2-59

2 Code Generation Options and Optimizations

2-60

Select the portable word sizes method if you want to generate code that can
be compiled without alteration both for SIL testing on the MATLAB host
computer and deployment on the target system. In this case, the code that
you generate has conditional processing macros that allow you to first compile
for the host platform, using the compiler option -DPORTABLE_WORDSIZES, and
then compile for the target platform, omitting the option.

To illustrate both methods of configuring your model to simulate target
behavior on the MATLAB host, The MathWorks™ provides the demo model
rtwdemo_sil. The demo allows you to simulate the same model using each
method, and to compare model configuration settings and results.

Validating Generated Code on the MATLAB® Host
Computer Using Hardware Emulation

Real-Time Workshop Embedded Coder software provides Emulation
hardware settings that support code generation for host-target configurations
in which the processor word sizes differ between host and target platforms (for
example, a 32-bit host and a 16-bit target). Selecting MATLAB Host Computer
as the Emulation hardware device type allows you to generate model

code with any additional code, such as data type casts, that is necessary to
ensure behavior on the MATLAB host computer that is consistent with the
target environment.

To use this feature, go to the Emulation hardware subpane of the
Hardware Implementation pane of the Configuration Parameters dialog
box, clear the None option if it is selected, select Generic as the Device
vendor if it is not already selected, and select MATLAB Host Computer as
the Device type. Also, go to the Interface pane, select Create Simulink
(S-Function) block, and make sure that Enable portable word sizes is
cleared.

Verifying Generated Code with Software-in-the-loop Testing

r— Emulation hardware [code generation only)
[Mone
Device vendor: IGeneric

Device type: IMAT LAB Host Computer

Mumber of bits: char: IS shart: |1 B int: |32
long: |32 native word size: |32

Byte ordering: ILittIe Endian LI
5

Signed integer divigion rounds to: IUndefined

¥ | Shift right on a sigred integer as arithmetic shift

You can then right-click the subsystem that you want to test on the MATLAB
host, and select Real-Time Workshop > Build Subsystem to build it. This
will generate an S-function wrapper for the generated subsystem code, which
can be used on the host to verify that the generated code provides the same
result as the original subsystem.

For an example of SIL testing using hardware emulation, see rtwdemo_sil.

Validating ERT Production Code on the MATLAB® Host
Computer Using Portable Word Sizes

The Real-Time Workshop Embedded Coder software provides a model
configuration option, Enable portable word sizes, that supports code
generation for host-target configurations in which the processor word sizes
differ between host and target platforms (for example, a 32-bit host and a
16-bit target). Selecting the Enable portable word sizes option allows

you to generate code with conditional processing macros that allow the same
generated source code files to be used both for SIL testing on the host platform
and for production deployment on the target platform.

To use this feature, select both Create Simulink (S-Function) block and
Enable portable word sizes on the Interface pane of the Configuration
Parameters dialog box. Also, make sure that Emulation hardware is set to
None on the Hardware Implementation pane.

Werification

Support software-in-the-loop [SIL] testing
’7|7 Create Simulink [S-Function) block. [V Enable portable word sizes

™ MAT-file logging

2-61

2 Code Generation Options and Optimizations

When you generate code from your model, data type definitions are
conditionalized such that tmwtypes.h is included to support SIL testing

on the host platform and Real-Time Workshop types are used to support
deployment on the target platform. For example, in the generated code below,
the first two lines define types for host-based SIL testing and the bold lines
define types for target deployment:

#ifdef PORTABLE_WORDSIZES /* PORTABLE_WORDSIZES defined */

include "tmwtypes.h"

#else /* PORTABLE_WORDSIZES not defined */
#define _ TMWTYPES_

#include <limits.h>

typedef signed char int8_T;
typedef unsigned char uint8_T;
typedef int int16_T;

typedef unsigned int uinti16_T;
typedef long int32_T;

typedef unsigned long uint32_T;
typedef float real32_T;

typedef double real64_T;

#endif /* PORTABLE_WORDSIZES */

To build the generated code for SIL testing on the host platform, the definition
PORTABLE_WORDSIZES should be passed to the compiler, for example by using
the compiler option -DPORTABLE_WORDSIZES. To build the same code for target
deployment, the code should be compiled without the PORTABLE_WORDSIZES
definition.

For an example of SIL testing using portable word sizes, see rtwdemo_sil.

Portable Word Sizes Limitations

The following limitations apply to performing SIL testing using the Enable
portable word sizes model configuration parameter.

¢ Numerical results of the S-function simulation on the MATLAB host

may differ from results on the actual target due to differences in target
characteristics, such as

2-62

Verifying Generated Code with Software-in-the-loop Testing

C integral promotion in expressions may be different on the target
processor

Signed integer division rounding behavior may be different on the target
processor

Signed integer arithmetic shift right may behave differently on the
target processor

Floating-point precision may be different on the target processor

2-63

2 Code Generation Options and Optimizations

2-64

Exporting Function-Call Subsystems

In this section...

“Overview” on page 2-64

“Exported Subsystems Demo” on page 2-65

“Additional Information” on page 2-65

“Requirements for Exporting Function-Call Subsystems” on page 2-65
“Techniques for Exporting Function-Call Subsystems” on page 2-67
“Optimizing Exported Function-Call Subsystems” on page 2-68

“Exporting Function-Call Subsystems That Depend on Elapsed Time” on
page 2-68

“Function-Call Subsystem Export Example” on page 2-69

“Function-Call Subsystems Export Limitations” on page 2-73

Overview

The Real-Time Workshop® Embedded Coder™ software provides code export
capabilities that you can use to

® Automatically generate code for

= A function-call subsystem that contains only blocks that support code
generation

= A virtual subsystem that contains only such subsystems and a few other
types of blocks

¢ Optionally generate an ERT S-function wrapper for the generated code

You can use these capabilities only if the subsystem and its interface to

the Simulink® model conform to certain requirements and constraints, as
described in “Requirements for Exporting Function-Call Subsystems” on
page 2-65. For limitations that apply, see “Function-Call Subsystems Export
Limitations” on page 2-73.

Exporting Function-Call Subsystems

Exported Subsystems Demo

To see a demo of exported function-call subsystems, type
rtwdemo_export_functions in the MATLAB® Command Window.

Additional Information

See the following in the Simulink documentation for additional information
relating to exporting function-call subsystems:

* “Systems and Subsystems”
e “Signals”

* “Triggered Subsystems”

¢ “Function-Call Subsystems”

o Writing S-Functions

If you want to use Stateflow® blocks to trigger exportable function-call
subsystems, you may also need information from the Stateflow and Stateflow®
Coder™ User’s Guide.

Requirements for Exporting Function-Call Subsystems

To be exportable as code, a function-call subsystem, or a virtual subsystem
that contains such subsystems, must meet certain requirements. Most
requirements are similar for either type of export, but some apply only

to virtual subsystems. The requirements that affect all Simulink code
generation also apply.

For brevity, exported subsystem in this section means only an exported
function-call subsystem or an exported virtual subsystem that contains such
subsystems. The requirements listed do not necessarily apply to other types
of exported subsystems.

Requirements for All Exported Subsystems

These requirements apply to both exported function-call subsystems and
exported virtual subsystems that contain such subsystems.

2-65

2 Code Generation Options and Optimizations

2-66

Blocks Must Support Code Generation. All blocks within an exported
subsystem must support code generation. However, blocks outside the
subsystem need not support code generation unless they will be converted to
code in some other context.

Blocks Must Not Use Absolute Time. Certain blocks use absolute time.
Blocks that use absolute time are not supported in exported function-call
subsystems. For a complete list of such blocks, see “Blocks That Depend on
Absolute Time” in the Real-Time Workshop® documentation.

Blocks Must Not Depend on Elapsed Time. Certain blocks, like the
Sine Wave block and Discrete Integrator block, depend on elapsed time. If
an exported function-call subsystem contains any blocks that depend on
elapsed time, the subsystem must specify periodic execution. See “Exporting
Function-Call Subsystems That Depend on Elapsed Time” on page 2-68 in the
Real-Time Workshop documentation.

Trigger Signals Require a Common Source. If more than one trigger
signal crosses the boundary of an exported system, all of the trigger signals
must be periodic and originate from the same function-call initiator.

Trigger Signals Must Be Scalar. A trigger signal that crosses the boundary
of an exported subsystem must be scalar. Input and output data signals that
do not act as triggers need not be scalar.

Data Signals Must Be Nonvirtual. A data signal that crosses the boundary
of an exported system cannot be a virtual bus, and cannot be implemented

as a Goto-From connection. Every data signal crossing the export boundary
must be scalar, muxed, or a nonvirtual bus.

Requirements for Exported Virtual Subsystems

These requirements apply only to exported virtual subsystems that contain
function-call subsystems.

Virtual Subsystem Must Use Only Permissible Blocks. The top level of
an exported virtual subsystem that contains function-call subsystem blocks

can contain only the following other types of blocks:

¢ Input and Output blocks (ports)

Exporting Function-Call Subsystems

® Constant blocks (including blocks that resolve to constants, such as Add)
® Merge blocks

¢ Virtual connection blocks (Mux, Demux, Bus Creator, Bus Selector, Signal
Specification)

e Signal-viewer blocks, such as Scope blocks

These restrictions do not apply within function-call subsystems, whether
or not they appear in a virtual subsystem. They apply only at the top level
of an exported virtual subsystem that contains one or more function-call
subsystems.

Constant Blocks Must Be Inlined. When a constant block appears at
the top level of an exported virtual subsystem, the containing model must
check Inline parameters on the Optimization pane of the Configuration
Parameters dialog box.

Constant Outputs Must Specify a Storage Class. When a constant
signal drives an output port of an exported virtual subsystem, the signal
must specify a storage class.

Techniques for Exporting Function-Call Subsystems

To export a function-call subsystem, or a virtual subsystem that contains
function-call subsystems,

1 Ensure that the subsystem to be exported satisfies the “Requirements for
Exporting Function-Call Subsystems” on page 2-65.

2 In the Configuration Parameters dialog box:

a On the Real-Time Workshop pane, specify an ERT code generation
target such as ert.tlc.

b If you want an ERT S-function wrapper for the generated code, go to the
Interface pane and select Create Simulink (S-function) block.

¢ Click OK or Apply.

3 Right-click the subsystem block and choose Real-Time Workshop >
Export Functions from the context menu.

2-67

2 Code Generation Options and Optimizations

The Build code for subsystem: Subsystem dialog box appears. This
dialog box is not specific to exporting function-call subsystems, and
generating code does not require entering information in the box.

4 Click Build.

The MATLAB Command Window displays messages similar to those for
any code generation sequence. The Real-Time Workshop build process
generates code and places it in the working directory.

If you checked Create Simulink (S-function) block in step 2b, The
build process opens a new window that contains an S-function block that
represents the generated code. This block has the same size, shape, and
connectors as the original subsystem.

Code generation and optional block creation are now complete. You can test
and use the code and optional block as you could any generated ERT code
and S-function block.

Optimizing Exported Function-Call Subsystems

You can use Real-Time Workshop options to optimize the code generated for
a function-call subsystem or virtual block that contains such subsystems.
To obtain faster code,

® Specify a storage class for every input signal and output signal that crosses
the boundary of the subsystem.

® For each function-call subsystem to be exported (whether directly or within
a virtual subsystem):

a Right-click the subsystem and choose Subsystem Parameters from
the context menu.

b Set the Real-Time Workshop system code parameter to Auto.
¢ Click OK or Apply.

Exporting Function-Call Subsystems That Depend on
Elapsed Time

Some blocks, such as the Sine Wave block (if sample-based) and the
Discrete-Time Integrator block, depend on elapsed time. See “Absolute and

2-68

Exporting Function-Call Subsystems

Elapsed Time Computation” in the Real-Time Workshop documentation for
more information.

When a block that depends on elapsed time exists in a function-call subsystem,
the subsystem cannot be exported unless it specifies periodic execution. To
provide the necessary specification,

1 Right-click the trigger port block in the function-call subsystem and choose
TriggerPort Parameters from the context menu.

2 Specify periodic in the Sample time type field.

3 Set the Sample time to the same granularity specified (directly or by
inheritance) in the function-call initiator.

4 Click OK or Apply.

Function-Call Subsystem Export Example

The next figure shows the top level of a model that uses a Stateflow chart
named Chart to input two function-call trigger signals (denoted by dash-dot
lines) to a virtual subsystem named Subsystem.

Togg|e e ——————— _’ In1
Select[———mrmmr e _> In2
ol e———--——Pp{ 1
Chart <DataOut>
|—> In3 Out1
-,
Dataln1
In1
————p»|In4
€D,
Dataln2 Subsystem
In2

The next figure shows the contents of Subsystem in the previous figure. The
subsystem contains two function-call subsystems, each driven by one of the
signals input from the top level.

2-69

2 Code Generation Options and Optimizations

2-70

In1 In2

<Toggle> : <Select>i

Toggle() Select()
atalnt

In3

Selector P |Selector DataOut —><D

<SelectorSignal> DataQut
Outt

@—> Dataln2
) <Dataln2>

|
Toggle Output n Select Input

Subsystem Subsystem

In the preceding model, the Stateflow chart can assert either of two scalar
signals, Toggle and Select.

* Asserting Toggle toggles the Boolean state of the function-call subsystem
Toggle Output Subsystem.

® Asserting Select causes the function-call subsystem Select Input
Subsystem to assign the value of DataIni or DatalIn2 to its output signal.
The value assigned depends on the current state of Toggle Output
Subsystem.

The following generated code implements the subsystem named Subsystem.
The code is typical for virtual subsystems that contain function-call
subsystems. It specifies an initialization function and a function for each
contained subsystem, and would also include functions to enable and disable
subsystems if applicable.

#include "Subsystem.h"
#include "Subsystem_private.h"

/* Exported block signals */

real_T DataIni; * '<Root>/In3' */

real T Dataln2; * '<Root>/In4' */

real T DataOut; /* '<84>/Switch' */

boolean_ T SelectorSignal; /* '<S5>/Logical Operator' */

~ —

/* Exported block states */

Exporting Function-Call Subsystems

boolean_T SelectorState; /* '<85>/Unit Delay' */

/* Real-time model */
RT_MODEL_Subsystem Subsystem_M_;
RT_MODEL_Subsystem *Subsystem_M = &Subsystem_M_;

/* Initial conditions for exported function: Toggle */

void Toggle Init(void)
{

/* Initial conditions for function-call system: '<S1>/Toggle Output Subsystem' */

/* InitializeConditions for UnitDelay: '<S5>/Unit Delay' */
SelectorState = Subsystem_P.UnitDelay_XO;

/* Output and update for exported function: Toggle */

void Toggle(void)

{
/* Output and update for function-call system: '<S1>/Toggle Output Subsystem' */

/* Logic: '<S85>/Logical Operator' incorporates:
* UnitDelay: '<S85>/Unit Delay'

*/

SelectorSignal = !SelectorState;

/* Update for UnitDelay: '<S5>/Unit Delay' */
SelectorState = SelectorSignal;
/* Output and update for exported function: Select */
void Select(void)
{
/* Output and update for function-call system: '<S1>/Select Input Subsystem' */
/* Switch: '<84>/Switch' incorporates:

* Inport: '<Root>/In3'
* Inport: '<Root>/In4'

2-71

2 Code Generation Options and Optimizations

*/
if(SelectorSignal) {
DataOut = Datalni;
} else {
DataOut = DataIn2;

/* Model initialize function */
void Subsystem_initialize(void)
{
/* initialize error status */
rtmSetErrorStatus (Subsystem_M, (const char_T *)0);
/* block I/0 */
/* exported global signals */
DataOut = 0.0;
SelectorSignal = FALSE;

/* states (dwork) */

/* exported global states */
SelectorState = FALSE;

/* external inputs */
DataIni = 0.0;

DataIn2 = 0.0;

Toggle Init();

/* Model terminate function */
void Subsystem_terminate(void)

{

/* (no terminate code required) */

2-72

Exporting Function-Call Subsystems

Function-Call Subsystems Export Limitations
The function-call subsystem export capabilities have the following limitations:

¢ Real-Time Workshop options do not control the names of the files containing
the generated code. All such filenames begin with the name of the exported
subsystem. Each filename is suffixed as appropriate to the file.

¢ Real-Time Workshop options do not control the names of top-level functions
in the generated code. Each function name reflects the name of the signal
that triggers the function, or for an unnamed signal, the block from which
the signal originates.

® This release cannot export reusable code for a function-call subsystem.
Checking Configuration Parameters > Real-Time Workshop >
Interface > Generate reusable code has no effect on the generated
code for the subsystem.

¢ This release supports code generation for ERT generated S-function blocks
if the block does not have function-call input ports, but the ERT S-function
block will appear as a noninlined S-function in the generated code.

¢ This release supports an ERT generated S-function block in accelerator
mode only if its function-call initiator is noninlined in accelerator mode.
Examples of noninlined initiators include all Stateflow charts.

¢ The ERT S-function wrapper must be driven by a Level-2 S-function
initiator block, such as a Stateflow chart or the built-in Function-call
Generator block.

® An asynchronous (sample-time) function-call system can be exported,
but this release does not support the ERT S-function wrapper for an
asynchronous system.

e This release does not support code generation for an ERT generated
S-function block if the block was generated as a wrapper for exported
function calls.

¢ The output port of an ERT generated S-function block cannot be merged
using the Merge block.

¢ This release does not support MAT-file logging for exported function calls.
Any specification that enables MAT-file logging is ignored.

® The use of the TLC function LibIsFirstInit is deprecated for exported
function calls.

2-73

2 Code Generation Options and Optimizations

® The model_initialize function generated in the code for an exported
function-call subsystem never includes a firstTime argument, regardless
of the value of the model configuration parameter IncludeERTFirstTime.
Thus, you cannot call model_initialize at a time greater than start time,
for example, to reset block states.

2-74

Nonvirtual Subsystem Modular Function Code Generation

Nonvirtual Subsystem Modular Function Code Generation

In this section...

“Overview” on page 2-75

“Configuring Nonvirtual Subsystems for Generating Modular Function
Code” on page 2-76

“Examples of Modular Function Code for Nonvirtual Subsystems” on page
2-80

“Nonvirtual Subsystem Modular Function Code Limitations” on page 2-86

Overview

The Real-Time Workshop® Embedded Coder™ software provides a subsystem
option, Function with separate data, that allows you to generate modular
function code for nonvirtual subsystems, including atomic subsystems and
conditionally executed subsystems.

By default, the generated code for a nonvirtual subsystem does not separate a
subsystem’s internal data from the data of its parent Simulink® model. This
can make it difficult to trace and test the code, particularly for nonreusable
subsystems. Also, in large models containing nonvirtual subsystems, data
structures can become large and potentially difficult to compile.

The Subsystem Parameters dialog box option Function with separate data
allows you to generate subsystem function code in which the internal data for
a nonvirtual subsystem is separated from its parent model and is owned by
the subsystem. As a result, the generated code for the subsystem is easier

to trace and test. The data separation also tends to reduce the size of data
structures throughout the model.

Note Selecting the Function with separate data option for a nonvirtual
subsystem has no semantic effect on the parent Simulink model.

To be able to use this option,

2-75

2 Code Generation Options and Optimizations

2-76

® Your Simulink model must use an ERT-based system target file (requires a
Real-Time Workshop Embedded Coder license).

® Your subsystem must be configured to be atomic or conditionally executed
(for more information, see “Systems and Subsystems” in the Simulink
documentation).

® Your subsystem must use the Function setting for the Real-Time
Workshop system code parameter.

To configure your subsystem for generating modular function code, you
invoke the Subsystem Parameters dialog box and make a series of selections
to display and enable the Function with separate data option. See
“Configuring Nonvirtual Subsystems for Generating Modular Function
Code” on page 2-76 and “Examples of Modular Function Code for Nonvirtual
Subsystems” on page 2-80 for details. For limitations that apply, see
“Nonvirtual Subsystem Modular Function Code Limitations” on page 2-86.

For more information about generating code for atomic subsystems, see the
se